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Abstract Over the last few years, the estimation of energy
expenditure with accelerometers has become more and more
accurate due to improvements in sensor technology. Signifi-
cant enhancement could be reached by model-based estima-
tion regarding different activity types. The kmsMove-sensor
(movisens GmbH, Karlsruhe, Germany) is a device that is
used to compute human energy expenditure using motion-
dependent calculation models. It is outfitted with an acceler-
ometer to measure body acceleration during certain move-
ments and activities. To validate its accuracy, the sensor was
compared to indirect calorimetry as criterion measure. For this
experiment, nine subjects (all males, age 46.4±10.9 years, 28–
64 years) were equipped with the kmsMove-sensor as well as
a portable indirect calorimeter and their energy consumption
was measured over a time period of 100 min. Additionally, the
energy consumption of seven out of the above-mentioned nine
subjects was measured over an average of 7 h. The measure-
ments took place in a rehabilitation clinic, where the subjects
completed their regular daily rehabilitation activities. An
analysis of the data revealed ICCs between the kmsMove-
sensor and indirect calorimetry for the time period of 100 min
of 0.82 (0.38–0.96; p=0.003) and for an averaged measuring
time of 7 h of 0.81 (0.22–0.97; p=0.01). Furthermore, a
Bland–Altman analysis for the time period of 100 min led to

a difference of the means of 4.3 kcal (limits of agreement:
−94.3 and 102.9 kcal) and for the time period of an average
of 7 h to −14.0 kcal (limits of agreement: −320.0 and
292.0 kcal). These findings indicate that the kmsMove-
sensor is an appropriate measuring device with relatively
good accuracy to assess human energy expenditure in
rehabilitation patients. However, this study has some limiting
aspects (small sample size, artificial setting) which could
influence validity.
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Introduction

Assessment of the physiological parameter “energy expen-
diture” has become more and more important, not only
under research aspects but also in matters of illness
prevention and health promotion. Hence, Paffenbarger et
al. (1993) recommend an optimum of 300–400 kcal of daily
energy expenditure from physical activity to achieve health-
protecting effects [1]. Thus, there is a certain need to assess
energy expenditure of free-living individuals in everyday
life and to develop appropriate energy expenditure mea-
surement devices, so that people can be enabled to easily
assess their energy expenditure and thus can control for
adequate physical activity. There are a handful of existing
measurement techniques to assess energy expenditure but
only a few of them are appropriate to apply to measure-
ments in everyday life [2]. Indirect calorimetry via
expiratory gas exchange measurement is often referred to
as a “gold standard” for measuring energy expenditure. In
natural settings or field studies, indirect calorimetry is not
always an appropriate measurement technique because
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subjects have to wear a respiratory mask and are therefore
limited in performing their activities of daily living.
Accelerometers are easy to handle, the subjects are not
interfered by the measurement, and registration of physical
activity is nearly free of artifacts [3]. A disadvantage to
current accelerometers is that they only use one algorithm
to compute the energy expenditure from the captured raw
data. No single regression equation is able to accurately
predict energy expenditure for all kinds of activities [4].
This is mainly due to the variety and complexity of diverse
activities and movements and their relation to energy
expenditure. The weaknesses in assessing accurate energy
expenditure by accelerometry are mainly due to the applied
algorithms, and to a much lesser extent, due to the
technology of the accelerometers [5]. Therefore, it is
necessary to improve the calculation of energy expenditure
by using different regression equations for different kinds
of activities. The kmsMove-sensor is a new device which
captures the movements of its user on the basis of
accelerations. The sensor is capable of allocating the
different movements to certain categories of activity.
According to the category of activity, the sensor chooses
one of five algorithms to calculate the energy expenditure
based on the captured raw data (acceleration values). The
aim of this study is to investigate how accurately energy
expenditure can be assessed by the kmsMove-sensor. To
assess the energy expenditure measurement accuracy of the
kmsMove-sensor, the sensor was compared to indirect
calorimetry as criterion measure.

Methods

Procedure

The study took place in the rehabilitation clinic Überruh in
Isny, Germany. Fifteen patients wore both, the kmsMove-
sensor on the hip and the portable indirect calorimeter
MetaMax 3B (Cortex Biophysik, Leipzig, Germany) and
completed their regular daily rehabilitation activities. The
general physical activities were bicycle ergometer training,
gymnastics, walking, and hiking. Besides these activities, the
patients’ rehabilitation programs consisted of other kinds of
activities like relaxation or psychological counseling. The
measurements of all subjects started at 7:00 am and ended at
5:00 pm. Within that time span, there were breaks for
breakfast and lunch and for changing clothes. The
kmsMove-sensor recorded data without breaks while indirect
calorimetry was paused for breaks. Afterwards, the test
readings of the kmsMove-sensor and indirect calorimetry
were synchronized. Due to a breakdown of one of the
kmsMove-sensors and the disruption of the indirect calorim-
eters caused by cold weather conditions during outdoor

activities, a loss of data occurred. These technical problems
could not be solved in situ. Thus, the data for only nine
patients could be analyzed, at least for a time period of
100 min. From these nine patients, the recordings of seven
patients last for an average of 7 h.

Participants

The participants were patients of the rehabilitation clinic
Überruh in Isny, Germany. They had been informed about
the study in an oral presentation and provided informed
consent on participating voluntarily. The remaining nine
subjects of the original sample were all males at a mean age
of 46.4±10.9 years. They had a mean weight of 84.5±
9.2 kg and a mean height of 177.7±8.1 cm. The subjects
were all treated for back pain, received no medication, and
were free of any cardiovascular complications.

Measurement instruments

kmsMove

The kmsMove-sensor consists of a 5.3×3×2-cm-sized
body and can be fixed with a clip to the hip. Alternative
fixation with a chest belt and wristband are also possible.
During the measurements, the sensor was placed on the
right side of the subjects’ hip. The sensor is a three-axial
acceleration sensor with a range of ±8 g, a resolution of
12 bit and a sampling rate of 128 Hz. The recorded data
from the sensor, including raw data from the acceleration
sensor, can be displayed on a computer when connected to
it via USB cable. While being connected, the sensor can
also be charged and additionally configured with a special
software that is optimized to manage scientific studies with
large numbers of participants. After downloading data from
the sensor, the energy expenditure is calculated and stored
in a CSV file. Energy expenditure is displayed in steps of
1 s. Short time intervals allow monitoring spontaneous
activities. The sensor offers an overall measuring time of
7 days. The calculation of energy expenditure is done in
three steps: activity recognition, model selection, and
calculation of energy expenditure. The recognition of
different activities is based on the extraction of mathemat-
ical and statistical features of the raw acceleration signal.
The features are calculated for each segment of 4 s.
Calculated features are, amongst others, maximum frequen-
cy, step count, and the number of mean crossings. These
features are the input information of a decision tree which
classifies the activity of the person. Activities that can be
detected are rest (combination of lying, sitting, and
standing); bicycle or ergometer; going upstairs; walking
(combination of jogging, going downstairs, walking slow,
normal, and fast); and unknown activity. According to
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information from the manufacturer, the decision tree was
generated using data of approximately 100 subjects who
performed daily life activities. The accuracy of the activity
recognition algorithm is discussed by Jatobá et al. [6].
According to the detected activity, one of five different
models is selected. The formula for the models which are
used to calculate energy expenditure is:

EE ¼ b0 þ b1EEACþ b2Age � EEACþ b3Height � EEAC
þ b4Weight � EEAC

For each activity, the model is built by a set of five
coefficients (b0–b4). The coefficients were generated using
data of indirect calorimetry of the above-mentioned 100
subjects. EEAC is derived from the zero-mean acceleration
signal (ax, ay, az) in a segment of 1 s which consists of N
samples like:

EEAC ¼ smooth
1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axi2 þ ayi2 þ azi2

q !

EEAC is smoothed using a moving average filter.
Different models are used because there are activities
with high overall acceleration (EEAC) but low energy
expenditure (EE) and on the other hand, there are
activities with low overall acceleration but high energy
expenditure. The use of different models compensates
such over- or underestimations. By the use of models
that are dependent on subject-specific parameters like
age, height, and weight, no subject-specific calibration of
the sensor was necessary [6, 7].

Indirect calorimetry

Indirect calorimetry is a procedure, which is based on a
certain relationship between the combustion of substrates,
the consumption of oxygen, the expiration of carbon

dioxide, and the production of energy. For the combustion
of substrates, a certain amount of oxygen is required and a
certain amount of carbon dioxide is accumulated. From the
relationship of oxygen uptake and carbon dioxide expira-
tion, the metabolic respiratory quotient can be calculated.
For every metabolic respiratory quotient there is a certain
caloric equivalent, which expresses the relationship be-
tween the combustion of a certain substrate, the required
oxygen volume, and the amount of energy which is
produced. If the caloric equivalent and the consumed
oxygen volume are multiplied, one obtains the energy
expenditure for that certain time period [8].

The portable indirect calorimeter MetaMax 3B uses the
breath-by-breath technique and is able to run up to 20 h
without being connected to a PC via wireless telemetry
technology. This system is lightweight, comfortable, and
offers good mobility for the user. For calculating energy
expenditure, the MetaMax 3B uses an RQ-based equation
with an assumed protein utilization part of total energy
production (15%) according to Acheson [9].

Statistical methods

In order to investigate the agreement between the test readings
of the kmsMove-sensor and indirect calorimetry, a two-way
mixed, single measure, intraclass correlation (ICC (3,1)) was
conducted. Therefore, the software SPSS Statistics 17.0
(SPSS Inc., Chicago, IL, USA) was applied. Furthermore, a
Bland–Altman analysis was also performed to examine the
agreement between the two devices. This has been done with
Analyse-it for Microsoft Excel (Analyse-it Software, Ltd.,
Leeds, UK). The mean difference and the limits of agreement
were calculated according to Bland and Altman [10]. The
Bland–Altman analysis is a statistical procedure to check the
agreement of two different measuring devices. Therefore, the
measurement differences of both devices were plotted
against their mean. Normally, these differences follow a

Subject number Indirect calorimetry (kcal) kmsMove-sensor (kcal) Difference
(kcal)

Percentage
difference (%)

1 373 361 −12 −3
2 401 436 +35 +9

3 578 578 0 0

4 378 405 +27 +7

5 509 468 −41 −8
6 411 509 +98 +24

7 490 494 +4 +1

8 357 368 +11 +3

9 579 496 −83 −14
∅ total (absolute
value)

453±88 457±71 35±35 8±8

Table 1 Results of energy ex-
penditure measurements over
100 min

Eur Rev Aging Phys Act (2011) 8:109–114 111



normal distribution and so 95% of the differences usually lie
between the limits of ±2 standard deviations around the
mean difference (bias) of the two devices. Those limits are
the limits of agreement. If the differences of the two devices
lie between the limits of agreement, the two devices can be
used interchangeably [10].

Results

In Table 1 total energy expenditure values of each subject
over a measuring time of 100 min are presented. As one can
see from Table 1, the difference of the means of both
measurement devices is only 4 kcal, with a very small
overestimation of energy expenditure by the kmsMove-
sensor. The total averaged difference is 35 kcal or 8%.

Table 2 shows the test readings of both devices over an
average of 7 h. Unfortunately, there occurred a loss of data
with subjects 5 and 7, so their test readings were not long
enough to be considered for a long time period. The test
readings of the remaining seven subjects show a difference
of the means of both devices of 13 kcal, with a small

underestimation of energy expenditure by the kmsMove-
sensor. The averaged total difference is 121 kcal or 7%.

The intraclass correlation analysis revealed a high correla-
tion between the test readings of the kmsMove-sensor and
indirect calorimetry for a measuring time of 100 min (0.82
(0.38–0.96); p=0.003) and for a time period of an average of
7 h (0.81 (0.22–0.97); p=0.01). The Bland–Altman analysis
for the time period of 100 min revealed a bias (difference of
the means) of 4.3 kcal and limits of agreement of −94.3 and
102.9 kcal. As one can see from the Bland–Altman plot
(Fig. 1), all measured differences lie between the limits of
agreement.

For the time period of an average of 7 h, the Bland–
Altman analysis showed a bias of −14.0 kcal and limits of
agreement of −320.0 and 292.0 kcal. All measured differ-
ences lie between the limits of agreement as well (Fig. 2).

Discussion

The total averaged difference of 35 kcal or 8% over a
measuring period of 100 min as well as the total averaged

Subject number Measurement
duration (hours)

Indirect
calorimetry (kcal)

kmsMove-
sensor (kcal)

Difference
(kcal)

Percentage
difference (%)

1 7.6 1,917 1,788 −129 −7
2 7.2 1,595 1,614 +19 +1

3 7.4 2,116 2,062 −54 −3
4 7.5 1,503 1,610 +107 +7

6 7.2 1,589 1,837 +248 +16

8 7.5 1,856 1,631 −225 −12
9 5.2 1,405 1,341 −64 −5
∅ total (absolute value) 7.1±0.8 1,711±256 1,698±226 121±156 7±5

Table 2 Results of energy ex-
penditure measurements over an
average of 7 h
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Fig. 1 Bland–Altman plot for the time period of 100 min Fig. 2 Bland–Altman plot for the time period of an average of 7 h
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difference of 121 kcal or 7% over a measuring time at an
average of 7 h seems to be quite acceptable. Especially if
one keeps in mind that the reference measure indirect
calorimetry is considered a “gold standard” for measuring
energy expenditure but is not appropriate for measurements in
everyday life. As the intraclass correlation demonstrates, there
is a high correlation between the test readings of the kmsMove-
sensor and indirect calorimetry over a measuring time of
100 min as well as over an average of 7 h. The bias of 4.3 kcal
over a measuring time of 100 min and a bias of −14 kcal at an
average of 7 h can be neglected in reference to the
measurement duration and confirms the acceptable agreement
between the two devices. Nevertheless, there are large limits of
agreement for both measurement durations. Potential causes
for the variations of the two devices could be the basic
metabolic rate and static activities such as gymnastics or
bicycle ergometer training, since these activities contain only
slight movements of the hip and energy expenditure of arm and
leg movements cannot be adequately assessed. The partially
wide ranges of energy expenditure between the subjects are
likely due to their different rehabilitation programs, since some
of the subjects performed a lot of exercise therapy activities
while others did more relaxation activities over their measuring
period.

To establish a comparison with other accelerometers, we
searched Medline databases for validation studies with the
following key words: “accelerometry”, “accelerometer”,
“validity”, “validation”, “energy expenditure”, and “energy
consumption”. Our criteria for further consideration were
indirect calorimetry as reference measure, comparable
statistical analyses, adult subjects, no laboratory assess-
ments, and similar measurement durations. In comparison
to other accelerometers, the kmsMove-sensor provides
relatively good test readings. Bassett et al. (2000) found
correlations of r=0.33–0.62 for several accelerometers
(CSA 7164, Caltrac, Kenz Selects 2, Yamax SW-701)
[11]. Welk et al. (2000) validated three different physical
activity monitors (CSA, Tritrac, Biotrainer) by letting the
subjects complete choreographed routines of different
lifestyle activities. The mean correlation coefficient for the
three accelerometers compared to indirect calorimetry was
0.55 [12]. A study of Berntsen et al. (2010) compared four
accelerometers (SenseWear Pro2, ikcal, ActiGraph,
ActiReg) to indirect calorimetry and found ICCs of 0.73
(0.44–0.88), 0.71 (0.41–0.87), both p<0.001 and of 0.55
(0.16–0.79; p=0.005), and 0.47 (0.02–0.75; p=0.004),
respectively. The mean differences and limits of agreement
from Bland–Altman analyses were −50.0 kcal (−446.7 and
346.7), −111.1 kcal (−409.3 and 187.1), −43.4 kcal (−304.5
and 217.6), and −33.9 kcal (−299.1 and 231.3), respectively
for ActiGraph, ActiReg, SenseWear Pro2, and ikcal [13].
Regarding the results of the statistical analyses from the
validation studies of these accelerometers, the kmsMove-

sensor seems to possess a better measurement accuracy in
comparison to the above-mentioned motion sensors. When
drawing this conclusion, one has to keep in mind that the
sample size of this study was very small and the
participants consisted only of men. Furthermore, the
rehabilitation setting is somewhat artificial because the
subjects are bound to a certain program comprising several
activities that are not typical for the daily lifestyle of the
subjects (e.g., relaxation therapy, snowshoeing). So these
results are not generalizable for other groups of people (e.
g., women, children), and they are only transferable in a
restricted manner to activities of daily living.

Conclusion

Taking into account the discussed limitations of the study,
the kmsMove-sensor seems to be a device that is quite
adequate for assessing energy expenditure. The obtained
measurement accuracy of the kmsMove-sensor is likely due
to the activity recognition and the resulting selection of one
of five algorithms to compute energy expenditure. As we
showed in this study, the sensor possesses good applicabil-
ity in a rehabilitation context. Possible other fields of
application might be prevention or health promotion studies
as well as epidemiological studies. In this context, further
studies should investigate larger and mixed samples within
naturalistic settings containing various typical activities of
daily living.
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