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Abstract Physical activity positively influences brain
health and cognitive functioning in older adults. Several
physiological and psychological mechanisms have been
identified to underlie such a relationship. Cardiovascular
fitness is accompanied with changes in mechanisms such
as cerebral blood flow, neurotrophic factors, neurotransmit-
ter systems and neural architecture that have themselves
been associated with cognitive performance. Factors associ-
ated with exercise such as arousal, mood and self-perception
of competence seem also to influence cognitive perfor-
mance. Other explanation for the benefits of exercise in
cognition, results from the fact that the performance of
motor skills involve an important cognitive component
(e.g., executive functions and information processing
speed). Evidence of brain plasticity and behavior has been
provided from studies where animals are exposed to
enriched or complex environments. Exposure to such para-
digms in which physical activity plays an important role has
been found to influence various aspects of brain function
and structure. Studies using neuroimaging techniques have
established a link between the acquisition of different motor
skills and the occurrence of neuroplasticity in human adults.
This literature review indicates that the type of exercise and
its specific perceptual and cognitive characteristics may
influence cognitive performance. However, most of the
research has been focused on self-paced movements or

automatized skills and few intervention studies have exam-
ined the results of merging exercise and cognitive training in
a single program. An important scientific challenge for the
coming years is to design exercise programs capable of
mobilizing several type of mechanisms underlying the
effects of physical activity on brain and cognition.
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Introduction

Physical activity has the potential to intervene positively in
several perceptual, cognitive, and physical abilities as well
as health factors. The benefits of physical activity seem to
have a singular expression among the older population
because it is well known that aging is associated with
noticeable functional changes that can impact activities of
daily living. Research on the effects of physical activity in
cardiovascular function, muscular function, body composi-
tion and health conditions (e.g., hypertension and diabetes)
is abundant, and its positive influences are now well estab-
lished [22]. At the same time, a growing body of work has
been dedicated to the study of the relationship between
physical activity and cognition. This emergent line of inves-
tigation has reported promising findings, particularly in the
older population. There is now strong evidence, including
from several longitudinal studies, that physical activity and
exercise have a significant impact on several psychological
parameters [22]. Research has generally shown that older
adults who are more physically active exhibit better cogni-
tive performance than do older adults who are less physi-
cally active [10,35,42,119]. Meta-analytic reviews show that
the effect size of exercise in cognition frequently ranges
from small to moderate [24,44]. These benefits of exercise
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include, but are not limited to the following: greater efficiency
in information processing [44,73], enhancement of attention
capacity [59,108], better performance on tasks that demand
visual–spatial processing [116], benefits for executive-control
processes [24] and greater psychomotor speed [119].

Studies in animals and humans have investigated the
physiological, neurobiological and psychological bases that
account for the positive associations between physical ac-
tivity and cognition. At the physiological and neurobiolog-
ical levels of analysis, mechanisms that have been proposed
to justify the exercise–cognition relationship include cortical
structure (neurogenesis and synaptogenesis), cerebral me-
tabolism, neurotransmitters, neurotrophic factors, oxygen
availability, glucose regulation, and oxidative stress
[27,43]. At the cognitive and behavioral levels of analysis,
important roles has been attributed to executive control
processes [24], to attentional resources [104] or to effects
on mediating variables known to affect cognition, like
arousal, self-efficacy, mood or depression [90,125].

In this article, we first focus on the factors that support a
positive relationship between physical activity and cogni-
tion. Physiological and psychological mechanisms and be-
havioral interventions are reviewed from animal and human
studies. Subsequently, we analyse the implications of the
reviewed literature for the research about the effects of
exercise on the brain and cognition. Special emphasis is
given in the last section to the potential effects of different
types of exercise. Throughout the article physical activity
refers to body movement produced by the contraction of
skeletal muscles that results in energy expenditure above
resting levels [18]. Exercise refers to a subset of physical
activity that is planned, structured, and repetitive and has as
a final or an intermediate objective the improvement or
maintenance of one or more components of physical fitness
[18]. Physical fitness is a set of attributes that are either
health-related (e.g., cardiovascular fitness) or skill-related
(e.g., reaction time).

Aerobic fitness and cognition

Probably, the cardiovascular fitness hypothesis has been the
most recognized hypothesis for explaining the positive as-
sociation between physical activity and cognition. It sug-
gests that the gains in cardiovascular (aerobic) fitness
achieved through regular participation in physical activity
mediate cognitive performance benefits [21,45,127]. The
enhancement of aerobic fitness is thought to be accompa-
nied with changes in the underlying mechanisms such as
cerebral blood flow [38,122], brain-derived neurotrophic
factor (BDNF) [132,139] and cerebral structure [25,26]
that have themselves been associated with cognitive
performance.

The magnitude of the training effect on older adults’
cardiovascular condition differs among studies, and it has
been suggested that the amount of physical improvement
engendered is related to the degree of change in mental
abilities. It has been pointed out [9,125] that studies show-
ing positive effects of exercise in cognition have tended to
demonstrate large changes in individual pre- to post-
intervention scores for aerobic fitness. Findings from several
cross-sectional and other observational studies also showed
that aerobically fit adults performed better on cognitive tests
than did less fit adults [20,39,60,127].

Nevertheless, some studies have failed to obtain evidence
for the relationship between aerobic training and cognitive
function. Panton et al. [101] assigned older adults (70–
79 years) to aerobic training, strength training and control
conditions. Neither form of exercise was related to subjects’
reaction times or movement speed. Furthermore, an
important meta-analysis [24] found no relationship be-
tween the magnitude of improvements in VO2max and
the effect of exercise interventions on neurocognitive
function. Correspondingly, in the study by Etnier et al.
[45], a meta-regression analysis did not support the
cardiovascular fitness hypothesis.

Cerebral circulation hypothesis

Because oxygen and glucose are not stored in the brain, the
vascular system must quickly respond to environmental
demands on the central nervous system (CNS) by resupply-
ing activated brain areas with these substances [34]. Despite
representing only 2 % of the total body weight, the brain
uses 20–25 % of the total body oxygen and 25 % of the total
body glucose to meet the brain’s energy needs and for
metabolism and turnover of neurotransmitters [47]. Given
this fact, the cerebral circulation hypothesis suggest that
chronic exercise results in an enhancement of oxygen and
glucose transportation to the brain, which results in better
cognitive performance because of the increased resources
available to the cerebral environment [21,45]. This is par-
ticularly important for older adults because there is strong
evidence that age is inversely related to efficient delivery of
blood to the CNS [118,123]. Among the various mecha-
nisms that have been pointed to as being responsible for the
age-related decrement in blood flow are an increase in
whole-blood viscosity and plasma viscosity, loss of elastic-
ity and progressive fibrosis of cerebral vasculature [1,93].

Marks et al. [83] demonstrated that cerebral blood flow
and cognitive function is maintained in aerobically active
older adults; McFarland [88] showed that cognitive decline
observed in older adults was similar to impairments seen in
younger individuals under conditions of hypoxia. It was
reported [106] that older adults who are physically active
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or are still engaged in physically demanding work sustained
more constant cerebral blood flow levels than those that
who were classified as physically inactive; furthermore,
active individuals and workers also scored better on cogni-
tive testing compared to the inactive ones. Others have
concluded that individuals who retired and led a sedentary
lifestyle were at an increased risk of cerebrovascular disease
with associated cognitive impairment [106]. Finally, some
studies showed small but significant improvements in cog-
nitive performance (e.g., memory and reaction time) follow-
ing supplemental administration of oxygen [95,112] or
glucose [81,82].

Neurotrophic stimulation hypothesis

There are various studies of animal models that have shown
that PA induces BDNF and other growth factors consistent
with improved neuronal activity, synaptic structure, and
neuronal plasticity [34,135]. Findings in human samples
showed that a single bout of exercise can increase plasma
BDNF concentration [135]; a 5-week endurance training
also led to an increase in both basal as well as the end-
exercise BDNF [140]. Specifically, BDNF supports the
health and functioning of glutaminergic neurons, stimulates
neurogenesis and improves learning and mental perfor-
mance [27].

Neurotrophins are expressed throughout the brain, and
some of the highest levels have been found in the hippo-
campus, an area of the brain important in learning and
memory [27,96]. In addition to increasing the expression
of neurotrophins in the brain, exercise increases levels of
other types of trophic factors derived from endocrine tis-
sues. Investigation in animal models demonstrated that
insulin-like growth factor-I (IGF-I) levels increase in both
the periphery and in the brain after exercise [17]. IGF-I
might be an upstream mediator of BDNF gene regulation,
neurogenesis and the ability of exercise to protect the brain
from injury [17,27].

It seems that exercise mobilizes gene expression profiles
that would be predicted to benefit brain plasticity processes
[27]. The effects of genes encoding neurotrophins and other
proteins predict that exercise could regulate downstream
anatomical changes that support brain plasticity [27]. The
idea that neurogenesis also occur in the adult brain [2] was
first received with scepticism by the scientific community.
At present, it is well established that the mammalian adult
brain can produce new neurons [53,128,129]. At least one
study [41] demonstrated that the human hippocampus also
retains its ability to generate neurons throughout life. The
dentate gyrus, a hippocampal sub-region associated with
memory and learning, is the primary region where the
neurogenesis phenomenon takes place [63,75]. Recent

studies have suggested that neurogenesis can also be found
in neocortical association areas such as the prefrontal and
posterior parietal cortices of nonhuman primates [54,55].

Physical activity is one of the factors that positively affect
adult neurogenesis [75,129]. Colcombe et al. [26] showed
that significant increases in brain volume, in both grey and
white matter regions, were found as a function of fitness
training for subjects who participated in an aerobic fitness
training but not for subjects who participated in a stretching
and toning (nonaerobic) control group. Recently, it was
reported that aerobic exercise training is effective at revers-
ing hippocampal volume loss in late adulthood, which is
accompanied by improved memory function [40].

Neurotransmitter systems

The degeneration of neurotransmitter systems, primarily the
dopaminergic system, may contribute to age-related gross
and fine motor declines as well as to higher cognitive
deficits [115]. Age-related working memory impairment
was related to reduced prefrontal cortex dopaminergic trans-
mission caused by decreased dopamine synthesis in the
prefrontal termination region [94].

Directly testing of neurotransmitters changes in humans
is not possible. As a result, animal studies have been carried
out to support the claim that exercise induces changes in
brain concentrations. Researchers have focused their efforts
on the study of noradrenaline and dopamine. There is some
evidence of increased dopamine concentrations during and
following acute exercise and as a result of chronic exercise.
Research on acute exercise has demonstrated increases par-
ticularly in the brainstem and hypothalamus [92]. There
seems to be a “threshold speed” above which neurotrans-
mitter release begins [58,92]. Chronic exercise shows
region-specific effects with increases in the hypothalamus
and midbrain concentrations but decreases in the prefrontal
cortex, hippocampus and striatum [91].

In general, studies have shown either a decrease or no
significant effect of chronic exercise on noradrenaline con-
centrations in the whole brain, although there are some
regional variations (especially in the hypothalamus)
[91,92]. There is, however, unequivocal evidence for in-
creased catecholamine turnover in the brain during exercise
[89]. Increased concentrations of catecholamine metabolites
(the by-products of catecholamine synthesis and usage)
have been found in the brain during and following acute
exercise. As such, it is reasonable to state that exercise
induces increased catecholaminergic activity in the brain
during activity [89].

Taken together, animal studies have provided evidence
that the central dopaminergic, noradrenergic, and serotoner-
gic activity, release, and metabolism are influenced by
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exercise [90]. The results seem to be more consistent for
neurotransmitter response during exercise than for long-
term adaptations. Nevertheless, the studies in this research
area are scarce and have been marked by technological
limitations (e.g., measurements in the synapses are not yet
possible). An important question to be answered is how
changes in the synthesis and metabolism of neurotransmit-
ters as a result of exercise can influence cognition. One of
the possible answers is that it might follow an indirect
pathway: neurotransmitter changes may underlie most of
the impact of exercise in reducing depressive symptoms
both in healthy and clinical populations [33]. Hence, asso-
ciations between depression and cognitive decline have
been observed in several studies of older adults [50,109].

Cognitive energetics, arousal and self-efficacy

It has been hypothesized that declines in mental and phys-
ical health, regardless of age, result from insufficient phys-
ical and mental challenge and that controlled and repeated
challenge, either physical or mental, builds up the resources
and the “mental toughening” needed to meet environment
demands and cope with stress [29,30]. According to Dienstbier
[29], data from both non-human and human studies shows that
better performances across a variety of tasks appear to be
associated with increased catecholamine levels (adrenaline,
noradrenaline, and dopamine) and quicker return to baseline
rates following stressful manipulations.

Extending this perspective, Tomporowski [125] consid-
ers that older adults’ responses to challenging tasks are
predicted to lead to both short-term and long-term physio-
logical benefits as the increase in the levels of arousal and
energy set the stage for individuals to meet and overcome
task demands. An individual's newly acquired history of
success, in turn, motivates him or her to continue to engage
in challenging activities. The continued performance of
challenging activities by older adults would be expected to
lead to practice and its associated maintenance of skilled
behavior [125]. Within this framework, the level of difficul-
ty of the activities that integrate the intervention programs
for older adults is an important issue [51]. Training tasks
(both physical and cognitive) that are much too difficult or
much too easy will lead to lower levels of arousal and
motivation and thus substantially reduced learning. The
learning rate would be at a maximum when the task is
challenging yet still doable [56] as it is evidenced in the
well-known Yerkes–Dodson law [138], which predicts that
learning is an inverted U-shaped function of arousal level.

Frequently, older adults develop low perceptions of their
control and competence, with negative consequences on
their motivation [86,125]. Thus, the benefits of physical
and mental training might reside more in changed beliefs

than in cognitive abilities per se [19]. One important aspect
of the perceived control over one’s life is the construct of
self-efficacy. Self-efficacy is concerned with the individual’s
beliefs in his or her capabilities to execute necessary courses
of action to satisfy situational demands [6]. According to
McAuley and Elavsky [86], mastery experiences (perfor-
mance accomplishments) are the most potent source of
self-efficacy beliefs, often providing objective evidence rel-
ative to what constitutes a success or a failure. Self-beliefs
of efficacy can enhance or impair performance through their
effects on the cognitive, affective, or motivational interven-
ing processes; more efficacious individuals approach more
challenging and varied tasks [7]. It has been shown that self-
efficacy is a significant predictor of exercise adherence
[87,98] and that it can be also a consequence of exercise
participation [86]. The role of self-efficacy for exercise
participation (adherence, maintenance and effort expended)
could indirectly influence cognitive function, given the
known effects of physical activity on cognition. Also, it
has been hypothesized that efficacy may play a mediating
role in the relationship between physical activity and fitness
and cognitive function inasmuch as fitter, more active, and
more efficacious older adults are likely to demonstrate less
anxiety in challenging cognitive situations, thereby
performing better than their less active, less fit, and less
efficacious counterparts [86]. Further investigation is need-
ed to better understand the role that exercise self-efficacy
plays in the exercise–cognitive function relationship.

Cognitive complexity and cognitive training

Some types of exercise require demanding information pro-
cessing, and it is reasonable to consider that their practice
over time is also a form of cognitive training. Accordingly, it
has been hypothesized that the cognitive complexity level of
work and leisure-time activities could affect older people’s
intellectual functioning [113]. It is widely believed that
keeping mentally active will prevent age-related mental
decline [111]; from a neurobiological perspective, this no-
tion states that the use of neurons and neuronal networks
prolongs the efficiency of CNS activity during life
[117,121]. Some longitudinal studies have provided support
to the “use it or lose it” hypothesis. Zunzunegui et al. [141]
reported that few social ties, poor integration, and social
disengagement are risk factors for cognitive decline among
community-dwelling older persons. Others have found that
higher frequencies of participating in activities like reading,
playing chess, and completing crosswords were related to
slower declines in perceptual speed [52]. Even in old age,
working out on a regiment of substantively complex tasks
appears to build the capacity to deal with the intellectual
challenges that complex environments provide [113].
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There is also a growing body of evidence of positive
effects of programmed cognitive training at a behavioral
and functional level. In a frequently cited work, Ball et al.
[4] enrolled 2,800 subjects in training programs and
reported benefits on the specific abilities trained (speed of
processing, memory and reasoning). Results from other
study [126] provide evidence that even brief periods of
increased cognitive training (10–12 weeks) can improve
older adults' problem solving and flexible thinking. When
the additional effort required by more cognitive effort tasks
is rewarded (e.g., by the beneficial effect associated with
learning a new skill) it is possible that people become more
motivated to further develop these capacities.

In a controlled clinical trial, older adults randomized to
cognitive speed-of-processing training experienced improve-
ments in a visual attention test (useful field of view test,
UFOV®) [3] which were maintained over a 5-year period
relative to controls [134]. Results by Edwards et al. [36]
indicate that the cognitive speed-of-processing training not
only improves processing speed, as indicated by performance
on the UFOV®, but also transfers to certain everyday func-
tions, as indicated by improved performance on timed instru-
mental activities of daily living (e.g., quickly finding a
telephone number). Furthermore, it was shown that the en-
hancement of processing speed is protective against declines
in health-related quality of life across 5 years [136,137] and
against mobility declines among older drivers [37].

Environmental enrichment

Environmental enrichment is an experimental model in
which animals are housed in conditions that potentiate so-
cial interactions and sensory and motor stimulation
[107,114]. The “use it or lose it” hypothesis is also sup-
ported by this research paradigm, which provides evidence
that stimulating and challenging habitats are beneficial to
the cognitive functioning of laboratory animals [14,66,132].
Thus, as a result of living in an enriched environment, the
brains of animals undergo molecular and morphological
changes leading to improvements in learning and memory.
Mediating mechanisms engendered by enriched environ-
ments and training in behavioral tasks includes increased
dendritic branching and synaptogenesis, changes in support-
ive glial cells, addition to the brain’s capillary network, the
development of new neurons, and a cascade of molecular
and neurochemical changes [70].

Some authors support the hypothesis that environmental
enrichment and exercise affects brain neuronal circuitry in
similar ways, including the regulation of growth factors,
neurogenesis and structural changes, which regulate behav-
ioral plasticity [11,27,130]. Others consider that environ-
mental enrichment and exercise affect different phases of

the neurogenic process in distinct ways: the former seems to
increase the likelihood of the survival of new cells, whereas
the latter increases the level of proliferation of progenitor
cells [80]. Nevertheless, clear conclusions on this issue are
difficult to make because in some studies more opportunities
for physical activity are also included as part of the envi-
ronmental enrichment [64].

The type of exercise is another important issue that has
been debated in environmental enrichment paradigms. Some
research found that exercise characterized by unskilled mo-
tor movements increased capillary density without a signif-
icant change in synapse number, whereas motor skill
learning induced synaptogenesis in higher-order brain
regions involved in motor learning with no change in cap-
illary density [14,66,67]. Klintsova et al. [68] reported that
while motor skill training (obstacle course) enhanced per-
formance on a number of subsequent behavioral tasks such
as parallel bars, rope climbing, and rotarod, motor activity
alone such as walking in a closed alley had little effect on
performance. Other studies, however, have found a positive
association between running and neurogenesis in young and
old animals, which translated into improvements in behav-
ioral tasks [129,131]. There seems to exist also a potential
relationship between social interaction and exercise on brain
function and cognition. Thus, a recent study showed that the
effects of exercise on hippocampal neurogenesis were sub-
stantially delayed and reduced for a group of socially iso-
lated rodents compared with animals that were housed in a
group setting [120]. Future studies should examine this
issue in humans.

Environmental enrichment research has been mostly
done on rodents, but similar effects have been documented
in primates [69]. Direct research in humans has been limited
because it requires histological study of the brain. However,
a study that involved the autopsy of human brains [62] was
consistent with the environmental enrichment research
results in animals and suggested that dendritic systems in
humans function as a sensitive indicator of an individual's
(a)vocational activities (education had a consistent and sub-
stantial effect such that dendritic measures increased as
educational levels increased). Taken together, findings relat-
ed in this type of research provide a biological explanation
for the positive effects produced by physical and mental
activity on different cognitive functions in older adults and
also for the reduction in the risk of developing neurodegen-
erative disorders [23,114].

Transfer of learning

Transfer of learning is another factor that should be consid-
ered in the analysis of the association between the regular
practice of exercise and the individual's functional capacity.
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In the context of motor learning, Magill [79] defines the
transfer of learning as the influence of previous experiences
in a new context or on learning a new skill. In the tradition
of the “identical elements theory” of Thorndike and Wood-
worth [124], Magill considers two hypotheses to explain
why transfer of learning occurs. The skills components
hypothesis assumes that the transfer of learning occurs be-
cause the components of the skills (e.g., its kinematics
characteristics) and/or the context in which the skills are
performed are similar. The similarity of the cognitive pro-
cesses hypothesis posits that transfer occurs primarily be-
cause of similarities between the amount and types of
cognitive processes (e.g., engaging in problem-solving ac-
tivity, rapid decision-making, attention control, or the dual-
task functioning) required by the two skills or two perfor-
mance situations.

In the domain of sports psychology, some studies have
demonstrated that skill changes associated with sports prac-
tice are transferable to specific cognitive abilities The results
of a recent meta-analysis [133] that examined the relation-
ship between expertise in sports and measures of cognition
gave some support to the similarity of the cognitive process-
es hypothesis. It was found that interceptive sport types
(e.g., squash, tennis) had largest effects on measures of
processing speed and attention (e.g., divided attention) than
closed, self-paced sports (e.g., golf and swimming). A re-
cent study showed a beneficial effect of playing tennis on
the collision avoidance skill of 70- to 80-year-old tennis
players [78]. Also, it was shown that older adults with
expertise in orienteering activities seem to develop atten-
tional skills that withstand the age-related changes of some
aspects of visual attention [103].

In the driving-related literature, two recent experimental
studies [84,85] used an exercise program for older drivers
supported in the hypothesis that positive transfer of learning
occurs primarily because of similarities between the amount
and types of cognitive processes required by the perfor-
mance situations. For instance, it was hypothesized that
incorporating tasks in the exercise program that intend to
enhance speed of behavior could have a higher impact on
the individual’s capacity to respond quickly to environmen-
tal stimuli during actual driving. The authors reported that
improvements resulting from the exercise intervention took
place on several measures of visual attention, behavioral
speed, and multitask processing; this was a very positive
outcome given that motor learning frequently show a great
specificity with little generalization to related tasks or new
environments [56].

Research has also shown that transfer of learning can
occur on dual-task conditions using a variable priority train-
ing technique [71,72]. In this procedure, participants are
required to vary their response priorities between the two
tasks, whereas in the more typical fixed priority condition,

attention was given equally to the tasks. The greater im-
provement obtained under the variable priority condition
suggests that learning to modulate attention may be crucial
in the acquisition of task coordination skills.

Starting from these promising findings, it is necessary to
continue to investigate which cognitive abilities subserved
by the CNS are malleable in response to the participation in
exercise and to what extent they are transferable for activi-
ties of daily living. The mode of exercise is an important
issue in this field, as it is possible that different exercise
types impose characteristically different sets of mental
demands upon the practitioner, targeting different perceptive
and cognitive abilities and giving distinctive contributions
for the functional capacity of older adults.

Implications for research on the effects of exercise
on the brain and cognition

In the next paragraphs, the implications of the reviewed
literature for the orientation of future research on the area
are discussed.

Much research has been focused on the effects of aerobic
fitness on measures of cognitive function. Thus, the en-
hancement of aerobic fitness (the cardiovascular fitness
hypothesis) is very often considered as responsible for the
enhancement of cognitive functioning that accompanies the
practice of PA due to its influence in underlying mecha-
nisms such as cerebral blood flow, BDNF and cerebral
structure [26,127]. This paradigm of investigation is likely
to change in the next years, especially because important
meta-analytic studies have failed to obtain strong evidence
for the relation between aerobic fitness and cognitive func-
tion [24,45], indicating that the underlying mediators of this
relationship have yet to be fully identified [45].

Studies that have compared the individual and combined
effects of physical and mental exercise interventions
reported cognitive benefits to be larger with the combined
cognitive and physical training paradigms [46,99]. Efforts
should be taken to extend this line of investigation and to
examine if the effects of exercise that merge physical and
cognitive stimulation might transfer to other tasks of daily
living in older adults. As we have seen before, some studies
have already provided a positive answer to this question,
namely in the context of driving [84,85]. It is desirable that
more research be conducted to examine the general effects
of exercise interventions planned to stress not only physio-
logical systems, but also perceptive and cognitive mecha-
nisms. For example, it has been proposed that exercise that
results in gains in cardiorespiratory fitness leads to benefits
in tasks with a substantial frontal-lobe-dependent executive
control component [24,74]. These are the cerebral areas that
exhibit the largest age-related declines and are also the ones
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that show the largest exercise or fitness-related improve-
ments. Tasks that are included in the executive functioning
umbrella include those involving the use of information
retained in working memory, simultaneous execution of
multiple tasks, task switching, and inhibition of an ongoing
or prepotent response. Considering these characteristics, the
greatest gains in executive functioning might be achieved if
the exercise training stimulates aerobic capacity (and by
this means promoting physiological adaptations such as
higher blood perfusion and neurotransmitters turnover)
and also incorporate behavioral tasks that directly stim-
ulate executive control components (e.g., planning, in-
hibition and task switching).

Research has been trying to determine whether some
particular causes could have broad effects on many aspects
of cognitive functioning. This is an appealing idea, as the
identification of such causes might support the design of
interventions that translate into a broader range of positive
consequences in the individual's functional capacity. One
hypothesis that has been proposed is that all components of
information processing decline at approximately the same
rate, independently of task complexity and task types [12]
leading to the conceptualization of a model that held that age
differences in the performance of cognitive tasks can be
explained by age differences in the speed of processing
[110]. In this view, it is reasonable to consider that the
improvement of information processing speed has the po-
tential to impact the general cognitive ability in older adults,
leading to positive effects on their functional status, inde-
pendence and quality of life [36,100]. This was already
shown in the cognitive training literature [5], and recent
studies have also reported positive effects of exercise pro-
grams on the information processing speed of older adults
[84,85]. Future research using longitudinal designs is need-
ed to examine which exercise characteristics could improve
information processing speed in older adults and if this
hypothetical improvement has a large impact on the indi-
vidual’s functional abilities.

An interesting event associated with aging is increased
cautiousness or a shift in the speed–accuracy trade-off [57].
This change probably contributes to the well-established
age-related tendency for slowness of perceptual, motor,
and cognitive processes [13,28,97]. In chronometric studies,
models of the speed–accuracy trade-off indicate that there
will be large costs in reaction time for small gains in accu-
racy at high levels of performance. Thus, relatively small
differences between younger and older adults in their re-
sponse criteria could produce substantial differences in re-
action time [57]. Perhaps, if one could change this extra-
cautiousness behavior of older people (typically, they em-
phasize accuracy rather than speed), their performance dif-
ferences compared with younger adults could be reduced.
Previous work has shown that this is possible: after speed-

behavior training in a memory search task, equivalent accu-
racies were achieved for young and old adults and the
response time differences between the groups present at
baseline were substantially reduced [8]. In this experiment,
subjects were trained with a deadline procedure in which
they were required to constantly increase the speed with
which they performed the task. Thus, these data suggest a
more substantial improvement in performance related to
speed of responding for the old than for the younger adults
when exposed to appropriate training. The same kind of
strategy should be tested using exercise programs, which
regularly include motor activities dependent on reaction and
execution times. Marmeleira et al. [85] provided evidence
that exercise could be a good strategy to change the conser-
vative relationship between speed and accuracy that is typ-
ical in older adults. In their experimental study, the need to
quickly choose between different motor responses accord-
ing to the stimuli presented was recurrently trained during
the exercise sessions. At the end of the intervention, signif-
icant differences between the group of older adults that
participate in the exercise program and the control group
were found in a choice reaction time task, while accuracy
stayed very close to the baseline values for both groups.

The type of exercise is a factor that should be examined
more closely given its potential to induce specific effects in
the brain and in perceptual and cognitive abilities. The
investigation on the relationship between physical activity
and cognition in older adults has mainly examined the
effects of self-paced movements or automatized skills
(e.g., walking), and frequently the type of activity is con-
sidered mainly on its effects on aerobic fitness. However,
based on the literature reviewed, it seems reasonable to
hypothesize that exercises which exert large cognitive
demands (e.g., involving learning processes, executive con-
trol, information processing speed) could have a higher
impact on cognition. For instance, could an activity like
dance exert a differential influence in neuroplasticity in
comparison with walking? Can the learning of new motor
skills or the retraining and improvement of older ones in-
duce positive changes in the brain and in cognition? This
kind of questions are pertinent if one considers the idea that
nothing speeds brain atrophy more than being immobilized
in the same environment and that the monotony undermines
our dopamine and attentional systems crucial to maintaining
brain plasticity [31]. As observed previously in this article, it
is well documented that an enriched environment and cog-
nitive training can lead to improved learning and memory as
well as structural and morphological changes in the brain
[105]. Experimental animal studies have shown that exer-
cise associated with planning and execution of complex
movements is related to changes in brain structure [61].
Some studies with animals demonstrated that exercise char-
acterized by unskilled motor movements can increase
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capillary density without a significant change in synapse
number, whereas motor skill learning induce synaptogenesis
in higher-order brain regions involved in motor learning
with no change in capillary density [14,15,67].

In recent years, with the advent of sophisticated neuro-
imaging techniques, several studies were able to establish a
link between the acquisition of different skills and the oc-
currence of neuroplasticity in human adults. For example,
grey matter volume differences were reported for motor,
auditory, and visual–spatial brain regions when comparing
professional musicians (keyboard players) with a matched
group of amateur musicians and non-musicians [49]. In an
elegant study, it was shown that the posterior hippocampi of
people with extensive navigation experience (taxi drivers)
were significantly larger relative to those of control subjects
[80]. In another frequently cited study, it was demonstrated
that young adults who have learned to juggle, show a
transient and selective structural change in brain areas that
are associated with the processing and storage of complex
visual motion [32]. The findings from this last study were
reproduced in older adults [16]. Further research in humans
is needed to understand the influence of neuromotor exer-
cise training in brain health and cognition, which incorpo-
rates motor skills such as balance, coordination, agility, and
proprioceptive training [48]. Moreover, some forms of neu-
romotor exercise also contain an important aerobic compo-
nent, which is also a factor considered to influence brain
health and cognitive functioning.

Research has already started to reveal that different types
of exercise have specific repercussions on the brain and
cognition. A comparison between a group of internationally
competitive judo players and a group of healthy controls
showed a significantly higher grey matter tissue density in
the brain areas of judo players [61]. Another study [102]
reported that blood volume in the dentate gyrus (the only
hippocampal sub-region that supports adult neurogenesis) of
adults, assessed by magnetic resonance imaging as an in
vivo marker of neurogenesis, increased significantly over a
3-month period of aerobic exercise. Moreover, this increase
in dentate gyrus blood volume was significantly correlated
with gains in maximal aerobic capacity, and an improve-
ment in short-term memory. These results were corroborated
in a recent study that concluded that aerobic exercise train-
ing (walking program) is effective at reversing hippocampal
volume loss in late adulthood, which is accompanied by
improved memory function [40]. Important findings have
been also reported in the research about alternative forms of
exercise that intend to simultaneously target mind and body
(e.g., tai-chi and yoga). Kerr et al. [65] suggested that tai-chi
may elicit long-term plasticity in primary sensory cortical
maps, while others have demonstrated improvements in
both physical and psychological domains [76,77]. Mind–
body exercise also has a meditative aspect, which has been

proven very effective in lowering stress and is likely to
preserve memory and the hippocampal neurons [31].

Given all the evidence, future work should explore a line
of investigation where the focus of attention is on the
potential for different exercise programs to mobilize/stimu-
late a broad range of abilities (i.e., physical, perceptual and
cognitive) and, therefore, to produce higher benefits on
functional capacity, chronic disease risk, and quality of life
of older adults.

Summary

The brain is remarkably plastic at functional and anatomical
levels in response to experience, and evidence has accumu-
lated that physical activity preserves brain health and cog-
nition. Animal and human studies support that several
physiological and psychological mechanisms underlie the
relationship between physical activity and cognitive
functioning.

Cardiovascular fitness has been considered as a major
factor responsible for the positive influence of physical
activity in brain and cognition. Important mechanisms such
as cerebral oxygen and glucose availability, BDNF, neuro-
transmitters and cerebral structure have been hypothesized
to accompany changes in cardiovascular fitness. Neverthe-
less, some studies have failed to obtain strong evidence for
the relation between aerobic fitness and cognitive function.

Some types of cognitive training for older adults have
shown benefits that were sustained for relatively long peri-
ods of time. Also, the regular participation in complex
occupational activities seems to benefit older people’s intel-
lectual functioning. Considering that cognition plays an
important function in performing motor skills, it is reason-
able to consider that cognitive training also results from the
regular practice of exercise. This seems especially true for
those types of exercise that rely on high cognitive effort.
Important evidence of the influence of physical activity in
brain plasticity and behavior has been provided also from
studies where animals are exposed to enriched or complex
environments. Exposure to such environments in which
physical activity plays an important role has been found to
influence various aspects of brain function, neurochemistry,
and neural architecture.

The available scientific evidence supports the hypothesis
that maintaining an intellectually stimulating and physically
active lifestyle promotes successful cognitive aging. Until
now, the great majority of studies have focus their analysis
on single factors thought to influence cognitive function in
older adults. The few human intervention studies that have
examined the combined influence of multiple lifestyle fac-
tors (e.g., merging exercise and cognitive training) provided
evidences of the potential of such an approach. This view is

90 Eur Rev Aging Phys Act (2013) 10:83–94



related with another important issue: the role of different
types of exercise in cognitive functioning and overall func-
tional capacity of older adults. Using sophisticated neuro-
imaging techniques, several studies were able to establish a
link between the acquisition of different motor skills or the
practice of specific types of exercise and the occurrence of
neuroplasticity in human adults.

Mode of exercise and its specific perceptual and cogni-
tive characteristics/demands may influence the learning and
mental performance obtained. However, the investigation on
the relationship between physical activity and cognition in
older adults has mainly examined the effects of self-paced
movements or automatized skills. The body of work exam-
ining the effects of specific types of exercise/sports on the
functional capability of older adults should be expanded in
the future. Hence, an important scientific challenge is to
design exercise programs capable of mobilizing several type
of mechanisms underlying the effects of physical activity on
brain and cognition.
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