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Aerobic training as a means to enhance
inhibition: what’s yet to be studied?

Oron Levin1* and Yael Netz2
Abstract

Some of the neurodegenerative processes in healthy aging, including changes in structural and biochemical
properties of the brain, are argued to affect cortical inhibitory functions. Age-related deficits in the ability to control
cerebral inhibition may explain wide range of motor and cognitive deficits that healthy older adults experience
in daily life such as impaired coordination skills and declines in attention, concentration, and learning abilities.
Importantly, evidence from many studies suggests that impaired inhibitory control in advancing age can be
delayed or even alleviated by aerobic exercise training. Findings from a recent study by Duchesne and colleagues
(2015) may provide insights into this process. First, observations from Duchesne et al. indicated that aerobic
exercise training program improved cognitive inhibitory functioning in both patients with Parkinson’s disease
(PD) and matched older controls. Second, Duchesne et al. showed that cognitive inhibition and motor skills
were highly correlated both pre- and post-exercise in PD but not in controls. Based on the aforementioned
findings we highlight possible mechanisms that may play a role in the interactions between cognitive and motor
inhibitory functions in healthy elderly that could benefit from aerobic exercise training: specifically, the brain
neurotransmission systems and the frontal-basal ganglia network. In conclusion, we raise two fundamental
questions which are yet to be addressed: (1) the extent to which different brain neurotransmitter systems are
affected by aerobic exercise training; (2) the extent to which neurotransmitter levels prior to the onset of
intervention may facilitate (or impede) training-induced neuroplasticity in the aging brain.
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Background
Inhibition plays a critical role in control of many cogni-
tive and motor functions [1–3]. Cognitive inhibition can
be conceptualized as a process that blocks the spread of
activation, keeping attention focused sharply on the task
at hand [2]. Motor inhibition is required during with-
drawing, cancelation, or selection of voluntary move-
ments [1, 3]. Although distinct, cognitive and motor
inhibitory functions are mediated by overlapping pre-
frontal brain networks [4, 5] which are compromised by
aging processes to a greater extent than other regions of
the brain [6]. Over the last two decades evidence has ac-
cumulated regarding the beneficial effect of aerobic
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exercise training on brain functions and inhibitory control
in elderly [7–12]; see reviews [13–15]. The possibility that
aerobic exercise training may lead to more efficient inhibi-
tory processes is of particular interest, given that degraded
ability for inhibitory control is a primary cause of declined
performance in both cognitive and motor tasks in older
age [16, 17]; see reviews [18, 19].
The beneficial effect of aerobic exercise training on

both cognitive and motor functioning has been recently
examined by Duchesne and colleagues [20] on group of
patients with Parkinson’s disease (PD) and healthy older
adults. Findings from this study indicate that besides im-
proving physical fitness, the 3-months aerobic exercise
training improved cognitive functioning and motor
learning skills in both groups; particularly, enhancing
participant’s inhibition capacity. For PDs, the baseline
performance was differentially associated with training-
related improvements in both cognitive and motor do-
mains in the post-tests. While the study did not focus
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specifically on inhibitory functions, its findings offer a
platform for understanding the mutual effect of aerobic
exercise training on cognitive and motor functioning in
elderly as well as their relationships. In the present com-
mentary we focus, specifically, on neurophysiological
mechanisms associated with age-related changes in the
regulation of inhibition and discuss a multimodal ap-
proach to further our knowledge on the influence of aer-
obic exercise training on (motor) behavior.

The neurophysiological basis of age-related changes in
inhibitory control
Aging gives rise to structural and neurochemical
changes in the central nervous system (CNS) that could
impair connectivity within and between local and dis-
tributed brain networks, leading to cognitive and motor
declines [21, 22]. Structural changes are normally charac-
terized by a decrease in white matter microstructural
organization [21–25] and gray matter loss [26–28]. Struc-
tural declines may occur in parallel with depletion in the
concentrations of regional levels of neurotransmitters
such as gamma-aminobutyric acid (GABA) [29, 30] and
serotonin [31–35]; see review [36]. Deficiencies in
GABAergic activity [37–39] and impaired interactions be-
tween GABAergic and cholinergic system [40, 41] have
been documented, for example, in healthy aging and older
adults with mild cognitive impairments who also demon-
strated deficient motor inhibition; see review [19].
Movement control requires integration of information

from various sensory sources (vision, proprioception,
tactile) which is critically dependent on the balance be-
tween excitatory and inhibitory processes in the brain.
This balance is expected to be perturbed by impaired
activation of the above mentioned neurotransmission
systems [34, 39] or disruption in connectivity between
specific brain substructures [21, 22]. While all healthy
older individuals tend to present general declines in
both structural and biochemical properties of the
brain [21–25, 29, 32, 33, 37–41], performance de-
clines may still not be evident in some individuals
due to compensatory recruitment of alternative brain
resources [17, 42–44]. The conditions and functions
of principal brain neurotransmitter systems and their
age- and/or pathology-related alterations can be stud-
ied via application of a multimodal approach that
combines an array of brain imaging and brain stimu-
lation techniques [15, 19]. For example, assessment of
neurochemical properties (i.e., neurotransmitter con-
centrations and concentration ratios) in specific brain
regions can be monitored with magnetic resonance
spectroscopy (MRS) [29, 39] or positron emission
tomography (PET) [32] whereas the effects of local
neurotransmitter levels for cortical inhibitory pro-
cesses and neurophysiological assessments of brain
network activity and connectivity can be studied with
functional magnetic resonance imaging (fMRI) and/or
transcranial magnetic stimulation [16, 17, 37–44]; see
reviews [18, 19, 45].

The prefrontal-basal ganglia network
Inhibitory functions are believed to be largely subserved
by the frontal lobes of the brain. The role of these brain
regions in the inhibitory control of action and cognition
is well documented [46, 47]; see reviews [1, 48]). Not-
ably, parts of the brain network that regulate inhibition
are located in the prefrontal cortex which is more prone
to age-related structural changes than posterior areas
[23]. Evidence for the involvement of the prefrontal-
basal ganglia network in cognitive and motor function-
ing has been demonstrated by Duchesne et al. [20],
showing positive relationship between cognitive and
motor abilities in PD individuals. Indeed, recent struc-
tural imaging studies clearly show that age-related
changes in the microstructural organization of the
prefrontal-basal ganglia network are associated with a
reduced ability to actively prevent movements when a
“stop” is delivered after a “go” [49, 50]. Crucially, age-
related changes in brain activity and connectivity are
often seen in prefrontal brain regions such as the dorso-
lateral prefrontal cortex (DLPFC), inferior frontal cortex
(IFC), and/or pre-supplementary motor area (pre-SMA)
[42, 43] that are classically involved in the suppression
of prepotent response tendencies.
Another interesting finding from the study of Duchesne

and colleagues [20] was that baseline cognitive perform-
ance of PD individuals was positively associated with
training-related improvements in both cognitive flexibility
and inhibition. This observation suggests that the ability of
PDs to improve their motor and/or cognitive skills is deter-
mined, largely, by the integrity of the prefrontal network.
Taken together, observations from Duchesne et al. [20] call
for further investigation of the effect of aerobic exercise
training on the functioning of the aging prefrontal-basal
ganglia network.

Conclusions
Duchesne et al. [20] proposed that “aerobic exercise
training can be a valuable non-pharmacological inter-
vention to promote physical fitness in early PD, but also
better cognitive and procedural functioning”. Their find-
ings suggest that aerobic exercise training can at least
partly improve and/or restore functionality of dopamin-
ergic system in patients with PD and prompt questions
about the effect of aerobic exercise training on the interac-
tions between cognitive and motor functioning. Principal
challenges for future research at this juncture are: (1) to
examine how other brain neurotransmitter systems are af-
fected by aerobic exercise training; (2) to investigate the
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extent to which long-term effects of aerobic exercise train-
ing on cognitive and motor inhibitory functions (and their
interactions) are determine by the integrity of prefrontal
neurotransmitter systems; specifically but not exclusively:
GABA, serotonin, and dopamine. The addition of a neuro-
chemical perspective to the study of brain function and
neuroplasticity is highly innovative and would allow a dee-
per understanding of mechanisms by which aerobic exer-
cise training acts on cerebral inhibitory processes.
Another principal challenge is to examine whether

beneficial effects on cognitive/motor functioning could
be further enhanced by combining aerobic exercise
training with other types interventions such as pharma-
cological interventions [30], or non-invasive brain stimu-
lation techniques [51]; the latter may be used to target
specific brain structures or neurotransmitter systems. Fi-
nally, the fact that older adults can improve inhibitory
control through a multiple exercise intervention (i.e., aer-
obic exercise training combined with the practice of
motor/cognitive tasks) even more than through a single
exercise intervention (i.e., aerobic exercise training alone)
is well documented [52–55]. Future research should work
to established to what extent these interventions affect
brain regions or networks that regulate inhibition (in
association with their effects on motor functioning,
cognitive functioning, and health [56]). A critical aim in
this respect is to explore the specific effects of each
intervention (or combination of interventions) on
brain-behavior relationships.
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