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Abstract

Background: Sarcopenia, a progressive loss of muscle mass and function with advancing age, is a prevalent condition
among older adults. As most older people are too frail to do intensive exercise and vibration therapy has low risk and
ease of participation, it may be more readily accepted by elderly individuals. However, it remains unclear whether
vibration therapy would be effective among older adults with sarcopenia. This systematic review and meta-analysis
examined the effect of vibration therapy including local vibration therapy and whole-body vibration therapy, for
enhancing muscle mass, muscle strength and physical function in older people with sarcopenia.

Methods: A systematic literature search was conducted in March 2019 in the following 5 electronic databases:
PubMed, CINAHL, Embase, PEDro, and the Cochrane Central Register of Controlled Trials, with no restriction of
language or the year of publication. Randomized controlled trials and quasi-experimental studies examining effects of
vibration therapy on muscle mass, muscle strength or physical function in older adults with sarcopenia were included
in this systematic review. Two reviewers independently assessed the methodological quality of the selected studies.

Results: Of the 1972 identified studies, seven publications from six studies involving 223 participants were included in
this systematic review. Five of them conducted whole-body vibration therapy, while two conducted local vibration
therapy. A meta-analysis of randomized controlled studies indicated that muscle strength significantly increased after
whole-body vibration therapy (SMD 0.69, 95% CI 0.28 to 1.11, I2 = 0%, P = 0.001) and local vibration therapy (SMD 3.78,
95% CI 2.29 to 5.28, P < 0.001). Physical performance measured by the sit-to-stand test and the timed-up-and-go test
were significantly improved after the intervention (SMD -0.79, 95% CI − 1.21 to − 0.37, I2 = 0%, P < 0.001) and SMD -0.83,
95% CI − 1.56 to − 0.11, I2 = 64%, P = 0.02, respectively).

Conclusion: Vibration therapy could be a prospective strategy for improving muscle strength and physical
performance in older adults with sarcopenia. However, due to the limited number of the included studies, caution is
needed when interpreting these results. More well-designed, large sample size studies should be conducted to further
explore and validate the benefits of vibration therapy for this population.
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Introduction
The ageing population is rapidly increasing worldwide
[1]. The ageing process is responsible for marked
changes in multiple tissues and organs, especially for
skeletal muscle [2]. From age 40 to 80, total skeletal
muscle mass declines 30 to 50% in both men and
women [3, 4]. The term sarcopenia was first coined by
Rosenberg et al. in 1989 as the progressive loss of
muscle mass with advancing age [5]. With less muscle
mass, muscle strength and muscle function are greatly
reduced [6]. However, the loss of muscle strength is
much more rapid than the parallel loss of muscle mass
[7]. Subsequently, sarcopenia has been defined as a defi-
ciency in muscle mass plus decreased muscle strength or
the impaired physical performance [6].
Sarcopenia is prevalent in the older population. It im-

pairs personal health and reduces life quality, while at the
same time putting a heavy financial burden on the health-
care system [8]. A recent systematic review found that the
prevalence of sarcopenia was 1–29% in the community,
14–33% in long-term care institutions and 10% in hospi-
tals [9]. Sarcopenia results in a higher risk of disability, de-
pression, mortality, increasing the risk of fall-related injury
and the possibility of being admitted to a long-term care
facility [10–13]. The health care cost of sarcopenia in the
United States alone was estimated at $18.5 billion or ap-
proximately 1.5% of total healthcare expenditure in the
year 2000 [14, 15]. Additionally, sarcopenia will increase
hospitalization costs by 34% among patients 65 years and
older [16]. Early intervention is the key point to improve
the outcomes in older adults with sarcopenia.
The most effective physiologic way to prevent and

treat sarcopenia and related muscle malfunction is a
physically active lifestyle, or even better, physical exer-
cise [17, 18]. For example, aerobics, endurance exercise
and resistance exercise training have been regarded as
the main strategies for preventing physical function de-
cline [19]. However, these conventional exercises may
not be suitable for weak individuals (i.e., aged or frail in-
dividuals or elderly individuals with physical limitations),
especially institutionalized elderly persons, as their
muscle strength can deteriorate to a point where it be-
comes critical for independence during transfers and
walking [20–22].
An alternative to traditional exercise technology is vi-

bration therapy (VT). It may be a safe, autonomous, and
efficient way to increase or maintain muscle mass,
strength and function for elderly and weak individuals,
who are unable or unwilling to perform conventional
workouts [23–27]. When VT was added to conventional
resistive exercise, a great improvement in muscle power
was reported [28]. VT is a training modality that uses
mechanical oscillations as a stimulus for human neuro-
muscular structures, where the energy is transferred

from the vibration device to the human body or parts of
it [28–30]. The mechanical stimulus produced is thought
to use proprioceptive spinal reflexes to increase muscle
function by enhancing muscle spindle excitatory signal-
ing while lowering the inhibitory response of the Golgi
tendon organ to the motoneuron pool [28, 31]. Similar
to the effects of resistance training and plyometric train-
ing, vibration stimulus increases the gravitational load on
the neuromuscular system, thereby providing a stimulus
that modifies the functional capacity of skeletal muscle
[32]. VT can be applied to the targeted muscles mainly by
two ways: whole-body vibration (participants squat or
stand on the vibrating platforms) and local vibration (ap-
plied superficially over the targeted muscle) [20, 33].
A growing number of clinical trials have demonstrated

the favourable impacts of VT on postural control [34],
mobility [35–37], lean body mass, muscle strength and
physical performance [38–40], quality of life [41], effi-
cacy and safety [42] in healthy elderly individuals. How-
ever, when trials were conducted on frail elderly
individuals, hospitalized elderly individuals or more spe-
cifically, older adults with sarcopenia, improvement in
muscle function was not reported [43, 44].
Up to now, some systematic reviews [9, 43, 45] have

synthesized the evidence of physical activity in sarcope-
nia, none of which have included VT. No systematic re-
view has synthesized the evidence of VT among elderly
individuals with sarcopenia [20]. Therefore, it is now ne-
cessary to conduct a systematic review to examine all
the evidence and clarify the effects of VT on muscle
mass, muscle strength and physical performance in eld-
erly patients with sarcopenia. The findings from this
study could be used to guide clinical decision-making in
interventions and treatments for sarcopenia.

Methods
Protocol and registration
This systematic review was registered in the PROSPERO
international prospective register of systematic reviews
(no. CRD42019128866). We followed the Preferred
Reporting Items for Systematic review and Meta-Analysis
(PRISMA) guidelines in conducting this review [46].

Eligibility criteria
Abstract-only studies and reports were excluded from this
review because of the limited information on the interven-
tion and participants’ characteristics, as well as the diffi-
culty of determining the specific quality of these studies
The inclusion criteria were as follows: 1) Randomized

control studies or quasi-experimental studies; 2) The
studies should have clear and detailed diagnostic criteria
for sarcopenia, no matter which one was used in the
study; 3) VT (local VT or whole-body VT) was used in
the study, regardless of type; 4) Outcomes of the studies
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included at least one of the following data results:
muscle mass, muscle strength or physical function. Stud-
ies were excluded if they included individuals who had
evidence of hereditary or acquired muscular disease or
were under treatment with testosterone or other
pharmacological interventions known to influence
muscle mass or if they lacked related outcomes.

Search strategy
A systematic literature search was conducted in March
2019 in the following 5 electronic databases: PubMed,
CINAHL, Embase, PEDro, and the Cochrane Central
Register of Controlled Trials, with no restriction of lan-
guage or year of publication. The search terms used
were as follows: (sarcopeni* OR muscular atrophy OR
muscle weakness OR muscle mass OR fat free mass OR
lean body mass OR lean mass OR body composition OR
hand strength OR grip strength) AND (aged OR aging
OR seniors OR elderly OR older) AND (vibration OR
whole body vibration OR whole body vibration training
OR vibration exercise OR vibration platform OR vibra-
tory therapy OR vibratory plate OR sham therapy OR
Wbv OR low intensity vibration OR LIV OR VbX OR
WBVT). The exact search syntaxes used are listed in
Appendix 1 (Supplementary Table 1). Reference lists of
relevant articles were also manually searched, and au-
thors were conducted for additional data, if necessary,
for the systematic review.

Study selection
Two reviewers independently assessed potential eligible
studies by screening the titles, abstracts, and full texts.
In case of disagreement, consensus was sought between
the reviewers, or a third reviewer was asked. Duplicates
were identified and excluded, and multiple articles of the
same study were collated so that each study, rather than
each article, was the unit of interest in the review.

Data extraction and quality assessment
Data extraction was performed by two reviewers inde-
pendently using a standardized data collection form that
included the year of publication, first author, subjects
and their sex, age of participants, study design, diagnos-
tic criteria for sarcopenia, settings, main outcomes and
training protocols. All outcomes were reported as in the
original articles.
Two reviewers independently assessed the selected

randomized controlled trials according to the Risk of
Bias Tool found in the Cochrane Handbook for Systemic
Reviews of Interventions [47], with the following aspects:
sequence generation and concealment of allocation (se-
lection bias), blinding of participants and personnel (per-
formance bias), blinding of outcome assessors (detection
bias), incomplete outcome data addressed (attrition

bias), free of selective reporting (reporting bias), and
other bias. The quality of non-randomized studies was
assessed using the Methodological Index for Non-
Randomized Studies (MINORS) tool [48]. The MINORS
tool identifies 12 items, including 8 specifically designed
for non-comparison studies: a clearly stated aim, the in-
clusion of consecutive patients, a prospective collection of
data, endpoints appropriate to the aim of the study, an un-
biased assessment of the study endpoints, a follow-up
period appropriate to the aim of the study, loss to follow-
up less than 5%, and a prospective calculation of the study
size. The items are scored as follows: 0 = reported, 1 = re-
ported but inadequate, and 2 = reported and adequate. Re-
sults for non-comparison studies range from 0 (low
quality) to 16 (high quality). Disagreement on the quality
rating between the reviewers was settled by discussing or
consulting with the senior researchers if necessary.

Data synthesis and analysis
We followed the Cochrane Handbook for Systematic Re-
sults of Interventions to handle and analyse the data to
run the meta-analysis [49]. Outcomes are presented as
the mean change from baseline in muscle mass, muscle
strength and physical performance. All outcomes are
continuous variables. The meta-analysis was conducted
using Review Manager, version 5.3 (Cochrane, London,
UK). In the meta-analyses, standard mean differences
(SMD) and 95% confidence intervals (CIs) were used for
continuous data. The results were regarded as statisti-
cally significant when P < 0.05. Heterogeneity across
studies was tested by using the I2 statistic, which is a
quantitative measure of inconsistency across studies.
Studies were considered to have low heterogeneity when
the I2 statistic was 25–50%, and those with an I2 statistic
> 75% were considered to have high heterogeneity. A
random-effects model was used if the I2 statistic > 50%,
otherwise the fixed-effect model was used [50].

Results
Study selection
A PRISMA flowchart of the literature search and study
selection are demonstrated in Fig. 1 [46]. We identified a
total of 1972 records, with 1606 records left after dupli-
cates were removed. Then, 1548 records were excluded
after screening the title and abstract, leaving 57 articles
for full-text review. Among the 57 articles, 50 were ex-
cluded due to the following reasons: not focused on sar-
copenia in an elderly population (n = 41), not VT (n = 8),
no assessment of muscle performance (n = 1). The
remaining 7 articles were assessed for methodological
quality. All 7 articles were considered to have met the
quality standards of methodology and were retained for
the systematic review. The seven articles [51–57] came
from six clinical studies, so six research groups were
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included in this systematic review. Studies with two pub-
lications [54, 55] were considered as a single study
throughout the systematic review.

Quality of the study
The results of the quality assessment using the Cochrane
Collaboration Recommendations assessment tools are
reported in Fig. 2 and Fig. 3, and those using the MI-
NORS tool are reported in Supplementary Table 2. The
quality of the included studies were found to be accept-
able. The three randomized controlled trials showed a
high risk of performance bias, which is inevitable. The
MINORS scores ranged from 11 to 13 out of a possible
16 for the quasi-experimental studies. Most studies re-
ceived a score of 0 for the item for unbiased assessment
of the study endpoint. Due to the VT, it was not possible
to blind patients or study personnel to the group
allocation.

Study characteristics
The 6 clinical studies, composed of 3 quasi-
experimental studies and 3 randomized controlled
trails, involved 208 participants with sarcopenia. All
of them included subjects aged 60 years or older, ex-
cept one study [51] (58.2 ± 6.4 years old). The number
of participants ranged from 9 to 80. The diagnostic
criteria of sarcopenia among these studies were differ-
ent, and only one study [57] published in 2019 used
the diagnostic criteria of sarcopenia from the Asian
Working Group for Sarcopenia (AWGS). The others
used the diagnostic criteria from a variety of previous
studies. Details are shown in Table 1.
The characteristics of the VT protocols and outcome

measurements are outlined in Table 2. Overall, 145 par-
ticipants received VT. Two studies [52, 53], including 19
participants investigated local VT, with a vibration fre-
quency of 300 Hz. The other 4 studies [51, 54–57],

Fig. 1 Flowchart showing how the reviewed articles were identified and selected
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including 126 participants, adopted whole-body VT, and
the vibration parameters were different among these
studies, varying from 12 [56, 57] to 60 [54, 55] Hz. The
postures of participants on the whole-body VT platform
were standing [56], half-squat standing [51, 54, 55], and
sitting [57]. The training programmes in these 4 stud-
ies [52–57] were long-term programmes, and the dur-
ation of all programmes was 12 weeks, except for one
[57] that was 8 weeks. The remaining study [51] mea-
sured the acute effects of whole-body VT. All the
studies [51–53, 56, 57] measured the relevant pheno-
types before and after the intervention, and two stud-
ies [52, 54, 55] continued follow-up after the
intervention for 12 weeks.

Impacts of different vibration intervention strategies
Four studies assessed the effects of VT on muscle mass,
including two randomized controlled trials [55, 57].
However, different measurement tools had been used in
these studies: two of them [52, 55] used the cross-
sectional area, one [56] used the weight-adjusted muscle
mass index measured by bioelectrical impedance ana-
lysis, and one [57] adopted muscle mass measured by
dual-energy X-ray absorptiometry. There was no signifi-
cant increase in muscle mass in the studies by Wei et al.
[55], Pietrangelo et al. [52] and Zhu et al. [57]. However,
the study [56] that used the following weight-adjusted
muscle mass formula: total skeletal muscle mass (in kg)/
body weight (in kg) × 100, found that, after a 12-week
intervention of whole-body VT, the muscle mass was
significantly higher than that before the whole-body VT
intervention. The two randomized controlled trials indi-
cated that muscle mass did not show significant differ-
ences between the two groups (SMD 0.08, 95% CI − 0.32
to 0.48, I2 = 0%, P = 0.69) (Fig. 4).
Muscle strength was measured in all studies. Four

studies [52, 53, 55, 57] used lower limb strength mea-
surements as an indicator of muscle strength, while
three studies [51, 56, 57] used grip strength. All the
studies demonstrated that muscle strength increased sig-
nificantly after the VT intervention, regardless of which
indicators were used. The two randomized controlled
trials using whole-body VT indicated that muscle
strength showed a significant increase after whole-body
VT (SMD 0.69, 95% CI 0.28 to 1.11, I2 = 0%, P = 0.001)
(Fig. 5). One randomized controlled trial using local VT
also indicated a significant increase in muscle strength
after local VT (SMD 3.78, 95% CI 2.29 to 5.28, P <
0.001) (Fig. 6).
Physical performance was measured in five studies.

Different indicators were used among these studies. The
most commonly used one was the timed up-and-go test,
a coordination and agility test for elderly individuals,
which was used in four studies [51, 54, 56, 57]. The find-
ings of the four studies all revealed that the performance
of the timed up-and-go test improved significantly after

Fig. 2 Risk of Randomized control studies bias graph

Fig. 3 Risk of Randomized control studies bias summary
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the whole-body VT. Three studies [54, 56, 57] used five
repeated sit-to-stand tests as one of the indicators of phys-
ical performance, and all the findings showed that the
time for five repeated sit-to-stand tests shortened signifi-
cantly after the whole-body VT. Two studies [54, 57]
adopted walking speed as one of the indicators of physical
performance, and both studies suggested that walking
speed improved significantly after whole-body VT. Bal-
ance tests were performed as one of the phenotypes of
physical performance in 3 studies [51, 53, 57]. The find-
ings of Miller et al. [51], using the Berg balance scale to as-
sess static and dynamic balance capabilities, showed no
significant improvement after the whole-body vibration
intervention. The results of Bellomo et al. [53] demon-
strated a significant improvement in the sway area and in
the ellipse surface with open and closed eyes after 12
weeks of local VT. In a study by Zhu et al. [57], no signifi-
cant differences were noted in static and dynamic balance
capacity after 4 weeks of WBV exercise; however, signifi-
cant improvements were observed after 8 weeks. Two ran-
domized controlled trials that used whole-body VT
indicated that the time for five repetitions of the sit-to-
stand test and timed up-and-go test were significantly

decreased after the intervention [(SMD -0.79, 95% CI −
1.21 to − 0.37, I2 = 0%, P < 0.001) (Fig. 7) and (SMD -0.83,
95% CI − 1.56 to − 0.11, I2 = 64%, P = 0.02) (Fig. 8),
respectively].

Discussion
Overall, this systematic review with the six currently
available studies showed that VT may not have a notable
effect on muscle mass compared to no treatment, but it
has a significant impact on muscle strength and physical
function in older adults with sarcopenia.
In this study, the eligible investigations were limited to

VT, 2 [52, 53] for local VT and 5 [51, 54–57] for whole-
body VT, and muscle mass, muscle strength or physical
performance in older people with sarcopenia. Among
them, different methods were used to diagnose sarcopenia,
which could result in different severities of sarcopenia
among the participants in the studies, thus increasing the
risk of information bias. The interest in sarcopenia has
risen in recent years, while universally accepted diagnostic
criteria is still lacking [58]. Prior studies also mentioned
this inevitable bias [44, 45]. Therefore, we recommend
that future research should unify the diagnostic methods

Table 1 The characteristics of participants included in the review

Study year Study
design

Country Subjects
number
T (male,
female)
C (male,
female)

Mean
age

Diagnosing criteria of sarcopenia

Bellomo et al.
2013 [53]

RCT American T:10(10,0)
C:10(10,0)

70.9 ±
5.2

SMI (kg/m2) by DXA < 2 SD of a young reference group

Wei et al. 2017
[54, 55]

RCT China
(Hong
Kong)

T1:20(7,13)
T2:20(7,13)
T3:20(5,15)
C:20(5,15)

T1:78 ±
4
T2:75 ±
6
T3:74 ±
5
C:76 ±
6

SMI (kg/m2) by BIA, cutoff 8.87 kg/m2 for male, cutoff 6.42 kg/m2 for female

Zhu et al. 2019
[57]

RCT Mainland
of China

T:28(NR)
C:27(NR)

T:
89.5 ±
4.4
C:
87.5 ± 3

SMI (kg/m2) by DXA cutoff values 7.0 kg/m2 for male and 5.4 kg/m2 for female; grip
strength cutoff 26 kg for male and 18 kg for females, walking speed cutoff value 0.8 m/
s from AWGS

Pietrangelo
et al. 2009 [52]

CCT Italy T:9(4,5) M:
75.3 ±
6.9
F:
71.0 ±
5.7

SMI (kg/m2) by DXA < 2 SD of a young reference group

Chang et al.
2018 [56]

CCT China
(Taiwan)

17(12,5) 82.12 ±
8.19

SMI (kg/kg) by body composition analyzer (model IOI353) cutoff for males 10.75 kg/m2,
and females 6.75 kg/m2 grip strength cutoff 26 kg for male and 18 kg for females,
walking speed cutoff value 0.8 m/s Standards

Miller et al.
2018 [51]

CCT American 15(0/15) 58.2 ±
6.4

ALM/BMI cutoff values 0.789 for male and 0.512 for female

SMI (kg/m2): muscle mass (kg)/height (m)2, SMI (kg/kg): muscle mass (kg)/weight(kg), ALM/BMI: ALM (appendicular lean mass)/BMI (body mass index), DXA Dual
energy X-ray absorptiometry, BIA Bioimpedance analysis, AWGS Asian Working Group for Sarcopenia
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according to the consensus from the International Work-
ing Group on Sarcopenia [7], the European Working
Group on Sarcopenia in Older People [59] and the Asian

Working Group for Sarcopenia [60] to improve homogen-
eity in study populations and contribute to the under-
standing of the results. The vibration protocols were quite

Table 2 The characteristics of training protocol and outcomes included in the review

Study year Type of
intervention
(T/C)

Vibration
machine

Posture of WBV or
location of LV

Vibration
Frequency
(Hz)

Time of
duration

Frequency
of sessions
×duration
of
program

Outcome measures and (follow
up period in weeks)

Muscle
mass

Muscle
strength

Physical
performance

Bellomo
et al. 2013
[53]

T:LV
C:None

VISS device
(Vissman, Rome,
Italy)

Vastus medialis, vastus
lateralis and rectus
femoris muscles

300 15min 1/week
from week
1 to 8
3/week
from week
9 to 12

NM Lower-
limb
strength
(0,12)

Balance test:
Sway area (0,
12)

Wei et al.
2017 [54,
55]

T1: WBV
T2: WBV
T3: WBV
C: None

WBV machine
(Fit vibe excel,
Gymna Uniphy
NV, Bilzen,
Belgium)

Stood barefoot with
their knee joint flexed at
60° on the platform of
the WBV machine with
hands holding onto the
rail in front

T1:20
T2:40
T3:60

12min
6 min
4 min

3/week
from 1 to
12

CSA
(0,6,12,
18,24)

Lower-
limb
strength
(0,6,12,18,
24)

Meter
walking test
Timed up
and-go test
Five-
repetition sit-
to-stand test
(0,6,12,18,24)

Study year Type of
intervention
(T/C)

Vibration
machine

Posture of WBV or
location of LV

Vibration
Frequency
(Hz)

Time of
duration

Frequency
of sessions
×duration
of program

Outcome measures and (follow up
period in weeks)

Muscle
mass

Muscle
strength

Physical
performance

Zhu et al.
2019 [57]

T: WBV
C: None

WBV machine
Wellengang
Excellence
reciprocating
vibration
platform (SVG,
Wellengang,
Germany)

Set on the chair next to
the WBV machine and
put the foot on the fixed
position of the WBV
machine with hands
holding onto the rail in
front

12 for 1 to
2 weeks
14 for 3 to
6 weeks
16 for 7 to
8 weeks

20min 5/week
from 1 to 8

DXA (0,
8)

Handgrip
strength
Lower-
limb
strength
(0,8)

The 6-m gait
speed test
Timed-up-
and-go test
Five-times-sit-
to-stand test
Balance test
(0,8)

Pietrangelo
et al. 2009
[52]

LV VISS device
(Vissman, Rome,
Italy)

Intermedius femoris,
rectus femoris, vastus
medialis, and vastus
lateralis muscles.

300 15min 1/week
from week
1 to 8
3/week
from week
9 to 12

CSA (0,
4,8,12)

Lower-
limb
strength
(0,4,8,12,
28)

NM

Study year Type of
intervention
(T/C)

Vibration
machine

Posture of WBV or
location of LV

Vibration
Frequency
(Hz)

Time of
duration

Frequency
of sessions
×duration
of program

Outcome measures and (follow up
period in weeks)

Muscle
mass

Muscle
strength

Physical
performance

Chang et al.
2018 [56]

WBV Whole-body
vibration (i-
vib6050 model)

Stood on a vibration
and stimulation
generating platform

12 10min 3/week
from week
1 to week
12

SMI (kg/
kg)
(1, 12)

Grip
strength
(1, 12)

Eight-foot up
and go test
Five repeated
sit-to-stand
tests
Standing on
one-foot text
Shoulder-arm
flexibility text
(1, 12)

Miller et al.
2018 [51]

WBV Whole-body
vibration (Power
Plate platform
(Northbrook,
Illinois)

Stood bare foot on the
platform, legs shoulder
width apart, knees flexed
to a 30° angle, and their
arms placed equidistant
on the device handles.

30 T1:6 min
T2:1min

T1:1 time
T2:6 time

NM Grip
strength
(acute)

Timed Up
and Go Test
Berg Balance
Scale
Sit and Reach
(acute)

WBV whole-body vibration, LV local vibration, CSA cross-sectional area, SMI (kg/kg): muscle mass (kg)/weight(kg), DXA Dual energy X-ray absorptiometry, NM
not measured
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heterogeneous in terms of vibration type, vibration fre-
quency, and vibration duration. It is hard for us to draw a
conclusion as to the optimal vibration protocol. In previ-
ous studies, various vibration frequencies for whole-body
VT have been used in frail populations [25, 61–63]. They
used VT mainly between 12 and 30Hz. We found whole-
body VT uses a different vibration frequency and dur-
ation, which was mainly between 12 and 40Hz and 1–20
min, respectively, than local VT, for which two studies
used the same vibration frequency and duration of 300Hz
and 15min, respectively.
Studies included in this systematic review reported

that muscle mass might not increase significantly after
VT, either whole-body VT or local VT. Only one in-
cluded quasi-experimental study [56] found that the
weight-adjusted muscle mass index (muscle mass/body
weight) was improved after whole-body VT. However,
this weight-adjusted muscle mass index ignored the
change in body weight after whole-body VT. Studies
have proved that whole-body VT could lead to weight
loss [64, 65]. Therefore, the improvement in the weight-
adjusted muscle mass index in this study may not be
caused only by the change of muscle mass. Our findings
suggested that VT did not provide sufficient stimulus for
skeletal muscle hypertrophy in older adults with sarco-
penia. These findings were in accordance with the sys-
tematic reviews performed by Chen et al. [66] and
Beaudart et al. [43]. All of their results showed no im-
pact of VT on muscle mass in regard to frail partici-
pants, participants residing in a nursing home or
participants with limited mobility. The above partici-
pants may be too weak to tolerate a large dose of VT
[9]. Furthermore, a small dose of VT would be difficult

for older adults with sarcopenia who are inclined to lose
muscle mass and who have a limited number of muscle
spindles to excite to cause a significant increase in
muscle mass [55]. However, we observed studies report-
ing that muscle mass increases ranged from 3.4 to 8.7%
after whole-body VT [67, 68]. These studies required
participants to exercise on the vibration platform, for in-
stance, to perform a squat, deep squat, wide stance
squat, toes-stand, deep toes-stand and one-legged squat.
Standing position during WBV may facilitate the human
response to a vibration stimulus [69, 70]. All the partici-
pants in this systematic review stood [56], half-squat
stood [51, 54, 55] or sat [57] on the machine during the
VT, which might remove the influence of exercise and
thus not be sufficient to stimulate muscle hypertrophy
in the participants.
A favourable impact of whole-body VT [69, 71, 72] and

local VT [38, 73] on muscle strength was proposed by pre-
vious studies in healthy adults. This study found that it
may also work in older adults with sarcopenia. According
to the limited information we found, lower limb muscle
strength increased from 38.4 to 41.7% [55, 57] during the
intervention period with whole-body VT, but the increase
could not be maintained after cessation of training. How-
ever, lower limb muscle strength increased by 43% after
local VT, and the increase in strength was consistently
maintained after local VT was interrupted for 12 weeks
[53]. The reason could be that, during whole-body VT,
the vibration energy was reduced by the activity of mus-
cles in the lower extremity and the positions of the knee
and ankle joints, which may influence the magnitude of
the stimulus applied to proximal structures [74, 75]. Fur-
thermore, the reduction of energy from VT could decrease

Fig. 4 The forest plot of effect sizes of whole-body vibration therapy compared to control on muscle mass. Values on x-axis denote standardized
mean differences. The diamond illustrates the 95% confidence interval of the pooled effects

Fig. 5 The forest plot of effect sizes of whole-body vibration therapy compared to control on muscle strength. Values on x-axis denote
standardized mean differences. The diamond illustrates the 95% confidence interval of the pooled effects
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if it was applied directly at the location of the muscle [76].
The reason could also be that whole-body VT was gener-
ally conducted with a lower vibration frequency and less
duration time (vibration frequency varied from 12 to 60
Hz, and duration time varied from 1 to 20min) than local
vibration (vibration frequency was 300Hz, and duration
time was 15min) in the included studies. Some frail par-
ticipants cannot tolerate a high dose of whole-body VT,
because they have difficulty squatting or standing on the
vibrating platform for a long time or with a high vibration
frequency. This situation also limits the effectiveness of
whole-body VT [75]. However, we did not find any inves-
tigations that compared the effects of whole-body VT and
local VT in older adults with sarcopenia. Further studies
are needed to reveal whether local VT could be a more
beneficial therapy for frail elderly individuals with
sarcopenia.
Different senior physical fitness tests were adopted to

assess physical performance in older adults with sarco-
penia. This systematic review found that the timed up-
and-go test and five repeated sit-to-stand tests were
commonly used as physical performance measurements
and were significantly improved after whole-body VT.
These results were consistent with a series of systematic
reviews aimed at the healthy elderly persons [34, 36, 42].
These two tests were not measured in the studies con-
ducted by Bellomo et al. [53] and Pietrangelo et al. [52],
which used local VT. Thus, we could not discern
whether local VT had the same effect as the whole-body
VT. However, for the balance test, which was measured
after local VT and whole-body VT, both showed a
favourable impact on the balance test. This might mean
that VT can benefit the elderly individuals with sarcope-
nia with regard to balance function, just like for the
healthy and frail elderly populations [35, 36, 77–80].

Disordered balance is the most common cause of falls in
older adults and often leads to injury, disability, loss of
independence, and limitations in quality of life [80, 81].
Appropriate interventions, such as VT, might prevent
dysfunction or loss of independence.
Above all, VT did not significantly improve muscle

mass. However, muscle strength and physical perform-
ance promoted compared with no treatment. Our find-
ings, which reported that the increase in muscle strength
was not in line with the changes in muscle mass, were
similar to other studies [31, 70, 73]. Considering the
non-parallel relationship between the training-induced
changes in muscle mass and muscle strength, a possible
reason could be that the mechanism of VT, namely,
neuromuscular adaptations, caused an increase in type II
fibres in the participants, and synchronization of motor
units improved, rather than increased, in lean muscle
mass [31, 73]. In addition, studies have suggested that the
loss of muscle strength is more rapid than the loss of
muscle mass in older adults and that the decline in the
age-dependent strength cannot be explained by the loss of
muscle mass alone [39, 82]. It has been shown that better
muscle strength and physical performance are more vul-
nerable to the ageing process than muscle mass [83].
Therefore, VT that can improve muscle strength and
physical performance is critical for older adults with sar-
copenia, which is associated with better ability to perform
daily life activities and mobility, improvement in quality of
life and reduced healthcare costs [72, 84].
Some strengths of this systematic review should also

be highlighted. We searched 5 electronic databases with
no restriction on language or the year of publication. In
addition to this, we also manually searched the refer-
ences of the included studies for a broader research. To
our knowledge, this is the first systematic review that

Fig. 6 The forest plot of effect sizes of local vibration therapy compared to control on muscle strength. Values on x-axis denote mean differences.
The diamond illustrates the 95% confidence interval of the pooled effects

Fig. 7 The forest plot of effect sizes of whole-body vibration therapy compared to control on five-repetition sit-to-stand test. Values on x-axis
denote standardized mean differences. The diamond illustrates the 95% confidence interval of the pooled effects
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included all the studies available to describe the effects
of VT in older adults with sarcopenia according to the
suggestion of the guidelines. However, our findings need
to be interpreted with caution due to the potential limi-
tations. First, only six studies with three randomized
controlled trials were included. We could not draw more
certain conclusions based on the small number of ran-
domized controlled trials. Apart from this, the overall
methodological quality of the included studies ranged
from moderate to excellent; among these, two studies
were high quality, and the others were moderate. Third,
the diagnostic criteria, vibration protocols and outcome
measures that used in the included studies were distinct,
making direct comparison difficult, and the high hetero-
geneity in the meta-analysis results could have led to an
overestimation of the effects.

Implications for future research
Although this systematic review provided evidence that
VT had positive effects on older adults with sarcopenia,
we should consider that there was great variety among the
studies concerning sample size, degree of sarcopenia, types
of interventions and types of assessments. In addition, the
absence of changes in some of the outcomes explored in
this analysis indicated that VT must be carefully adapted
to the sample of older adults with sarcopenia. Moreover,
as the included studies only compared one type of VT
with no treatment, we do not know the effectiveness of
VT compared with conventional exercises or among the
different types of VT. These limitations suggest that fur-
ther research is needed to unify diagnostic methods ac-
cording to consensus and compare different vibration
types (local vibration and whole-body vibration), vibration
times, vibration frequencies, vibration amplitudes and vi-
bration magnitudes in elderly individuals with sarcopenia.
More in-depth research comparing VT with other exer-
cises that have been proven effective is needed.

Conclusions
Compared with no treatment, VT showed the potential to
provide positive benefits in improving the muscle strength
and physical performance of older adults with sarcopenia.
However, no significant improvement was found in terms
of muscle mass. Due to inherent imprecision (limited

sample size of the participants) and publication bias (the
number of studies included was less than 10 for each out-
come), the level of evidence was downgraded. To apply VT
in elderly individuals with sarcopenia, more well-designed,
large sample size randomized controlled clinical trials are
needed to examine efficacy and different regimens.
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