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Abstract
Background A more fragmented, less stable rest-activity rhythm (RAR) is emerging as a risk factor for health. 
Accelerometer devices are increasingly used to measure RAR fragmentation using metrics such as inter-daily stability 
(IS), intradaily variability (IV), transition probabilities (TP), self-similarity parameter (α), and activity balance index 
(ABI). These metrics were proposed in the context of long period of wear but, in real life, non-wear might introduce 
measurement bias. This study aims to determine the minimum number of valid days to obtain reliable fragmentation 
metrics.

Methods Wrist-worn accelerometer data were drawn from the Whitehall accelerometer sub-study (age: 60 to 83 
years) to simulate different non-wear patterns. Pseudo-simulated data with different numbers of valid days (one to 
seven), defined as < 1/3 of non-wear during both day and night periods, and with omission or imputation of non-
wear periods were compared against complete data using intraclass correlation coefficient (ICC) and mean absolute 
percent error (MAPE).

Results Five days with valid data (97.8% of participants) and omission of non-wear periods allowed an ICC ≥ 0.75 and 
MAPE ≤ 15%, acceptable cut points for reliability, for IS and ABI; this number was lower for TPs (two-three days), α and 
IV (four days). Overall, imputation of data did not provide better estimates. Findings were consistent across age and 
sex groups.

Conclusions The number of days of wrist accelerometer data with at least 2/3 of wear time for both day and night 
periods varies from two (TPs) to five (IS, ABI) days for reliable RAR measures among older adults.
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Background
Accelerometer devices provide objective and continu-
ous measurements of human movement behavior [1] and 
are increasingly used to derive metrics of fragmentation 
of rest-activity rhythm (RAR), such as inter-daily stabil-
ity (IS) [2–4], intradaily variability (IV) [2–4], 3) transi-
tion probability (TP) between rest and activity during the 
day and between sleep and wake during the night [4–6], 
and detrended fluctuation analysis (DFA)-derived self-
similarity index (named alpha) [7–9] and activity balance 
index (ABI) [4]. There is emerging evidence of a more 
fragmented and less stable RAR to be associated with 
higher risk of adverse health outcomes [10], specially in 
older adults [11, 12], including motor [13], vascular [14, 
15] and neurodegenerative [12, 16–18] health outcomes, 
independently of total duration of physical activity [13, 
18] or sleep [19].

In this context, it is important to ensure the measure 
of RAR fragmentation metrics, originally developed in 
the context of long period of continuous wear without 
removal of the accelerometer [20], to be reliable in popu-
lation studies. Indeed, non-wear periods exist in real life 
data and there is a need to evaluate the extent to which 
partial data (that is including non-wear periods) can be 
used to reduce selection bias in studies examining the 
association between these metrics and health. A recent 
review of the literature on practices in the accelerometer 
field reported that four days is commonly used as the 
minimum number of days of wear (75% of papers using 
waist device adopted this criterion and 59% of the ones 
using wrist device) and 10  h of daily wear time as the 
minimum to consider a day to be valid (88% for waist and 
42% for wrist devices) [21]. This practice is supported 
by studies investigating the reliability of variables such 
as total time of physical activity and sedentary behavior 
using intraclass correlation coefficient (ICC), a metric 
to evaluate the reliability of measurements. Overall, in 
these studies, the minimum number of valid days ranges 
between three [22–24] and six days [25].

For RAR fragmentation metrics, there is little research 
on the impact of the number of valid days and the defi-
nition of a valid day (based on the proportion of non-
wear) on their reliability. One study evaluated the impact 
of the number of days of wear on IS and IV, and found 
IV estimations to be more robust to non-wear periods 
than IS and imputation of non-wear periods equal to 
or longer than one day unsatisfactory [26]. Outside the 
realm of accelerometer data, few studies investigated 
the robustness of the DFA to missing data [27, 28] and 
showed alpha to be robust to missing data even in small 
time series whether or not missing data were imputed. 
To the best of our knowledge, no previous study investi-
gated the properties of TP in regards to non-wear period. 
Furthermore, the impact of the definition of a valid day 

being based on the proportion of non-wear separately 
over day and night periods or over an entire day has not 
been investigated. Finally, two main strategies to deal 
with non-wear periods are to omit or impute data during 
these periods. Several imputation techniques have been 
proposed [26–28], but there is no clear evidence of sim-
ple or more sophisticated methods to perform better, the 
critical point being proceeding with an imputation at the 
epoch level [23, 29, 30].

In order to overcome current gaps in the literature on 
the impact of non-wear on accelerometer measures of 
RAR fragmentation, this study aims to determine the 
minimum number of valid days, using three different def-
initions of a valid day, for reliable measures of these met-
rics. A secondary objective was to assess whether there 
is any advantage to impute rather than omit non-wear 
periods.

Methods
Study population
The Whitehall II study is an ongoing prospective cohort 
study established in 1985–1988 among 10,308 British 
civil servants with clinical examinations every four-five 
years since inception. Written informed consent for 
participation was obtained at each contact. Research 
ethics approval was obtained from the University Col-
lege London ethics committee (latest reference num-
ber 85/0938). The Whitehall II accelerometry substudy 
was conducted during the 2012–2013 wave of data col-
lection (age range: 60–83 years) for participants seen at 
the London clinic and those living in the south-eastern 
regions of England who underwent clinical examination 
at home. It was among the first large studies in adults to 
use wrist-worn devices recording raw accelerometry over 
three axes, along with the UK Biobank (2013–2016) [23], 
the NHANES (2011–2014) [31], and the Women’s Health 
Accelerometry collaboration (2011–2014) [32], with the 
Whitehall II accelerometer substudy being specific to 
older adults.

Accelerometer measurement
Participants were requested to wear a tri-axial acceler-
ometer (GENEActiv Original; Activinsights Ltd, Kim-
bolton, United Kingdom) on their non-dominant wrist 
for nine consecutive 24-hour days. Accelerometer data, 
sampled at 85.7  Hz and expressed relative to gravity 
(1g = 9.81  m/s2), were processed using GGIR R package 
(2.9-0) [33]. The Euclidean norm minus one of raw accel-
eration was calculated and corrected for calibration error. 
Sleep episodes were identified using a validated algo-
rithm guided by a sleep log (daily report of sleep onset 
and waking time) [34]. Data from waking onset on day 2 
to same time on day 8 were retained, resulting in 7 days 
of data. The day period was defined as the period from 
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wake up to start the day to sleep onset at night and night 
period as the one from sleep onset at night to the follow-
ing wake up to start the day. An entire day was defined 
from waking onset to the next waking onset. Non-wear 
time was detected using a previously described algorithm 
[35]. Average acceleration over 60s-epoch lower than 40 
milligravity (mg) was classified as rest corresponding to 
activities not classified as light or moderate-to-vigorous 
activities [36, 37].

Rest-activity rhythm (RAR) fragmentation metrics
The following RAR fragmentation metrics were con-
sidered: IS, a measure of the consistency of the rhythm 
across days [2–4]; IV, an index of hourly fragmentation of 
the rhythm [2–4]; TPs, probabilities of state change from 
wake to sleep (TPws, n) and sleep to wake (TPsw, n) during 
the night, and from rest to activity (TPra, d) and activity 
to rest (TPar, d) during the day [4–6]; alpha, a measure of 
the fractal nature and stationarity of a time series [9]; and 
ABI, a measure of the fractal nature of a time series [4]. 
For more details on the calculation of these metrics, see 
supplementary Methods.

Simulation methodology
After exploring non-wear time patterns among par-
ticipants with non-wear episodes during the observa-
tion period, we conducted a pseudo-simulation study to 
examine how many valid days are needed to have reli-
able estimates of RAR fragmentation metrics. Using data 
from individuals with complete data over 7 days, we arti-
ficially created 20 simulated batches corresponding to 
three scenarios for the definition of a valid day, with for 
each scenario, the number of valid days varying from one 
to seven, and with omission or imputation of non-wear 
periods. The scenarios are:

  • Scenario 1: A valid day is defined as the 
accelerometer worn at least 2/3 of the entire 
day. To achieve this, a block of non-wear time is 
included in the day artificially, and its length is drawn 
following a Uniform distribution between one epoch 
and 1/3 of the wear time of that day. Then, the time 
location of the block in the day is drawn following 
a Uniform distribution between the first epoch of 
the day and the last minus the length of the block. 
Consequently, the block can be allocated in any 
period of the day (morning, afternoon or night).

  • Scenario 2: A valid day is defined as the 
accelerometer worn at least 2/3 of both the day 
and night periods. To achieve this, two blocks of 
non-wear time are included in the day artificially, and 
their lengths are drawn following two independent 
Uniform distributions between one epoch and 1/3 of 
the wear time of that awake period and sleep period, 
respectively. Then, the time location of each block 
in the day is drawn following a Uniform distribution 
between the first epoch of the day/night period and 
the last minus the length of the block. Consequently, 
the blocks are allocated in separate periods of the 
day (usually, the first block is in the morning or 
afternoon, and the second at night).

  • Scenario 3: A valid day is defined as the 
accelerometer worn full time during the entire 
day.

In Scenario 1 and 2, we chose to define a valid day based 
on at least 2/3 of wear time, either during the entire day 
or separately during the day and night periods, as it is 
similar to what is commonly done in the literature (10 h 
of wear during waking hours [21] or 2/3 of 24 h [38]), par-
ticularly in physical activity research, where most of the 
studies using accelerometer data stands. These scenarios 
with blocks of non-wear time rather than random epochs 
of non-wear were chosen to mimic what was observed 
in the population study. In total, among the 1241 par-
ticipants of the Whitehall accelerometer substudy with 
at least one episode of non-wear, 63.2%, 20.1%, and 9.4% 
had one, two, and three non-wear periods, respectively, 
over the overall observation period (Fig. 1). In the simu-
lation, Scenario 1 allows one bout of non-wear per day 
and Scenario 2 two bouts per day to account for non-
wear during the day and the night. Further, both sce-
narios have the same expected average of non-wear time 
(16.4%) within a valid day, because each block’s length 
follows a Uniform distribution between one epoch and 
1/3 of the period.

The cross of three scenarios and seven numbers of days 
retained (1, 2, 3, …, 7) resulted in 20 batches of simula-
tion, Scenario 3 with seven days being the reference. Each 
batch included 2859 participants for which the eight 

Fig. 1 Distribution of N blocks of non-wear over the full observation pe-
riod among the 1241 participants with at least one non-wear event. Note 
% of non-wear per person-day (a) was calculated among the 219 person-
days with at least one non-wear episode and less than 1/3 of non-wear 
during the day period and % of non-wear per person-night (b) was calcu-
lated among the 1490 person-nights with at least one non-wear episode 
and less than 1/3 of non-wear during the night period
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metrics (IS, IV, four TPs, alpha and ABI) were estimated 
twice, omitting or imputing non-wear periods. Omitting 
means that non-wear periods were excluded from the 
signal to calculate the metrics. The imputation method 
consisted of taking the average at the epoch level of the 
equivalent moment on the other days when the device 
was worn [23, 35]. For IS, the minimum number of days 
that could be tested was three as in order to be calculated 
this estimate needs that each hour of the day is observed 
at least twice during the observation period.

The reliability of the eight metrics was estimated using 
the ICC, a measure of correlation between the simulated 
batches and the reference batch (seven days of complete 
data), and mean absolute percent error (MAPE), a robust 
metric that summarizes the differences between the sim-
ulated batches and the reference [39]; see supplementary 
methods for details on the calculation. An ICC ≥ 0.75 
and a MAPE ≤ 15% were considered acceptable [40, 41]. 
Given that the TP metrics are day and night dependent, 
we chose to present findings for Scenario 2 in the manu-
script and those for Scenario 1 and 3 in the supplemen-
tary material.

Sensitivity analyses were conducted to examine 
whether findings for Scenario 2 were similar as a function 
of sex or age (< 70 years, ≥ 70 years). In post-hoc analyses, 
we also illustrated the impact of imputation on the signal 
of a selected participant.

All fragmentation metrics presented here were cal-
culated using R software and the codes are available on 
GitHub (https://github.com/iandanilevicz/frag_metrics). 
They will be included in a future release of GGIR R pack-
age (> 3.1–4) [42], and alpha and ABI can be calculated 
using DFA R package (1.0–0) [43].

Results
Among the 4880 participants invited to the accelerom-
eter sub-study at the 2012–2013 wave of data collec-
tion, 4267 returned the device among whom 4106 had 
data that could be analysed (flowchart in Supplemen-
tary Fig. 1). The number of participants with a minimum 
number of valid days varied according to the definition of 

a valid day. Table 1 shows that 3867 individuals wore the 
accelerometer for more than 2/3 of the entire day (wake 
up to next wake up) over seven days, 3832 for both 2/3 
of the day (wake up to sleep onset) and 2/3 of the night 
(sleep onset to next wake up) periods, and 2859 wore it 
full time over seven days. These numbers increase as the 
number of valid days decreases. Even though 2859 indi-
viduals represent a large part of the population (70%), 
the demographic characteristics, such as the average age, 
mean body mass index, sex proportion, and married/
cohabitation percentage, are significantly different from 
those who worn the devices for a shorter period (supple-
mentary Table 1).

The non-wear episodes are not frequent: in the 1241 
individuals with at least one event of non-wear, these epi-
sodes occur mainly once (63.2%) or twice (20.1%) over 
the full observation period (Fig.  1). Furthermore, the 
non-wear episodes are brief in the majority of cases, they 
are shorter than 10% of the day or night period dura-
tion (87.2% and 94.2%, respectively) for which partici-
pants removed the accelerometer for less than 1/3 of the 
respective periods (Fig. 2).

In the simulation study, the estimation of the fragmen-
tation metrics (IS, IV, TP, alpha and ABI) of the reference 
population (2859 who worn the accelerometer full time 
during 7 days) was compared with the one of the other 
20 batches. Figure 3 displays the ICC for the metrics in 
case of Scenario 2, where a valid day is defined as accel-
erometer wear time ≥ 2/3 of both day and night periods, 
omitting (blue) or imputing (green) non-wear periods. 
When non-wear periods were omitted, the ICC was 
slightly better for IS, TPar, d and TPra, d, while imputation 
of non-wear periods tended to result in better ICC for 
IV, TPws, n and TPsw, n. Using the criterion of ICC ≥ 0.75, a 
reliability estimation was achieved with at least five days 
for ABI and IS, four days for IV and alpha, one day for 
TPs related to the day period, two to three nights for TPs 
related to the night period when non-wear period were 
omitted. Similar findings were observed when non-wear 
periods were imputed, except for IS (which required an 
extra day). Results for Scenario 1 (valid day defined as 

Table 1 Number of participants meeting valid day requirements according to valid day definitions
N valid days Scenario 1:

Accelerometer wear 
time ≥ 2/3 of the entire 
day*

% Scenario 2:
Accelerometer wear time ≥ 2/3 
of both day and night periods

% Scenario 3:
Accelerometer worn 
during the entire day

%

1 4100 99.9 4097 99.8 4093 99.7
2 4093 99.7 4084 99.5 4064 99.0
3 4074 99.3 4067 99.1 4034 98.3
4 4054 98.8 4046 98.6 3978 96.9
5 4020 98.0 4012 97.8 3854 93.9
6 3985 97.1 3974 96.8 3571 87.0
7 3867 94.2 3832 93.4 2859 69.7
* An entire day is defined as the period between wake up to next wake up (it combines the day (wake up to sleep onset) and night (sleep onset to wake up) periods)

https://github.com/iandanilevicz/frag_metrics
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device worn at least 2/3 of the entire day) and 3 (device 
not removed at all during the entire day) are available in 
the Supplementary Figs.  2 and 3. The ICC for Scenario 
1 was slightly worse than for Scenario 2 (in 28 out 40 
cases when non-wear periods were omitted, and in 33/40 
cases when imputing non-wear periods. Still, there was 
little impact on the number of valid days needed using 
the criterion of ICC ≥ 0.75. The ICC for Scenario 3 was 
slightly better than for Scenario 2. There was a moderate 
impact on the number of valid days needed (one day less 
for IS, IV, and ABI when non-wear periods were omitted, 
and similarly for IS and IV when non-wear periods were 
imputed).

When using the MAPE as the performance measure, in 
Scenario 2 for valid day definition, we found that at least 
five days were needed to achieve a MAPE ≤ 15% for IS and 
ABI, four days for IV, two days for TPs related to the day 
period, two-to-three nights for TPs related to the night 
period and one day for alpha when non-wear periods 
were omitted (Fig. 4). MAPE values tended to be slightly 
better when imputing the non-wear periods for IS, TPar, d 
and TPra, d, but the reverse was true for IV, TPws, n, TPsw, n, 
alpha and ABI. Results for Scenarios 1 and 3 are avail-
able in the Supplementary Figs. 4 and 5 and show similar 
results to ICC. MAPE values for Scenario 1 were slightly 
worse than Scenario 2, but without changing decisions 
on the number of days needed, while for Scenario 3 they 
were slightly better than for Scenario 2 with one day less 
found to be needed for IS, IV, and ABI whether non-wear 
periods were omitted or imputed. Sensitivity analyses 
show findings to be substantially the same for men and 
women (Supplementary Figs. 6 and 7 for ICC and 8 and 
9 for MAPE), and younger and older age groups (Sup-
plementary Fig.  10 for ICC and 11 for MAPE in those 
aged < 70 years, Supplementary Fig.  12 for ICC and 13 
for MAPE in those aged ≥ 70 years). The only exception is 

for ABI, which requires six days for older age group and 
women when considering ICC.

In post-hoc analyses, in order to understand the impact 
of imputation on the fragmentation metrics, we plotted 
the observed accelerometry signal as a function of time 
of the day for six days for one individual and its aver-
age, we also displayed one specific day, removed four 
hours (simulated non-wear period), and imputed these 
hours based on the mean of the other days (Supplemen-
tary Fig. 14). The imputed hours are smoother (less vari-
ability and more similarity) than the original signal over 
these hours. Some RAR fragmentation metrics might be 
affected by this imputation procedure explaining why for 
example the reliability of IS (a measure of similarity) is 
lower when non-wear periods are imputed.

Discussion
This paper aimed to determine the minimum number 
of valid days of accelerometer data for reliable metrics 
of RAR fragmentation. Simulated scenarios were pro-
posed to mimic natural human behavior of non-wear 
time using real accelerometer data among more than 
2800 older adults. This study presents two key findings. 
One, we found that five days of accelerometer wear with 
no more than 1/3 of non-wear during both day and night 
periods provided reliable estimates of all fragmentation 
metrics; this number of required days varies as a function 
of the metric considered, between two-to-three days for 
TPs, four for IV and alpha, and five for IS and ABI. Two, 
whether non-wear time was imputed or omitted had little 
impact on the findings.

In this paper, we examined the impact of the number of 
valid days of accelerometer wear on RAR fragmentation 
metrics using three different definitions of a valid day. 
These definitions were chosen based on the literature and 
practical aspects. Most research on the impact of non-
wear time in accelerometry field has focussed on physical 

Fig. 2 Distribution of % of non-wear among valid day and night periods. Note % of non-wear per person-day (a) was calculated among the 219 person-
days with at least one non-wear episode and less than 1/3 of non-wear during the day period and % of non-wear per person-night (b) was calculated 
among the 1490 person-nights with at least one non-wear episode and less than 1/3 of non-wear during the night period
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Fig. 3 ICC according to the number of valid days defined as accelerometer wear time ≥ 2/3 of both day and night periods (Scenario 2)*. Abbreviations: 
intraclass correlation coefficient (ICC), inter-daily stability (IS), intradaily variability (IV), transition probability (TP), TP from activity to rest during the day 
(TPar, d), TP from wake to sleep during the night (TPws, n), TP from rest to activity during the day (TPra, d), TP from sleep to wake during the night (TPsw, n), and 
activity balance index (ABI). Bold values correspond to ICC ≥ 0.75
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Fig. 4 MAPE according to the number of valid days defined as accelerometer wear time ≥ 2/3 of both day and night periods (Scenario 2)*. Abbreviations: 
mean absolute percent error (MAPE), inter-daily stability (IS), intradaily variability (IV), transition probability (TP), TP from activity to rest during the day 
(TPar, d), TP from wake to sleep during the night (TPws, n), TP from rest to activity during the day (TPra, d), TP from sleep to wake during the night (TPsw, n), and 
activity balance index (ABI). Bold values correspond to MAPE ≤ 15%
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activity during day time and a common approach is 
to define a day as valid if the device is worn for at least 
10 h during the waking time, corresponding to approxi-
matively 2/3 of the waking periods [21]. Given that the 
fragmentation metrics cover either the entire day (such 
as IS or IV) or are specific to day or night periods (such 
as the TP), we chose two scenarios (1 and 2) that were 
specific either to the entire day or the day/night periods 
while the third scenario was the most stringent requiring 
the device to be worn over the entire day.

Overall, we found that five days are enough to reliably 
estimate all fragmentation metrics under the scenario 
where a valid day is defined as at least 2/3 of wear dur-
ing both the day and night periods and non-wear periods 
are omitted, this was the case both in men and women 
and in the younger (60–70 years) and older (70–83 years) 
age groups, except for ABI which requires six days for 
women and the oldest age group. This is in line with the 
recommended minimum of five days of observations in 
the nparACT software package to calculate IS and IV, 
although no recommendation was made regarding the 
definition of a valid day [44]. This requires one day more 
than the four days of wear commonly used in studies on 
accelerometer-assessed physical activity [21] although 
findings on the recommended number of valid days var-
ies between studies with for example studies reporting 
the minimum number of days of wear should be three 
[22–24], four [45], and six [25] days. The majority of the 
cited studies used seven days as the total number of days 
for reference [22–24, 45], except the last one, which uses 
fourteen days [25]. Given the lack of guidelines on the 
number of days required for reliable measures of RAR 
metrics, there is heterogeneity in the previous studies 
using these metrics, studies requiring between four to 
seven days for IS and IV [46], and between three to seven 
days for fragmentation index [47].

Our findings differ according to the fragmentation 
metrics used, with the number of required days varying 
between two-three for TPs, four for alpha and IV, and 
five for IS and ABI. IS and ABI were more impacted by 
non-wear periods than IV, the self-similarity parameter 
alpha and TPs. A previous study also reported the impact 
of non-wear to be higher for IS than IV [26]. In their 
original study on IS and IV, van Somoren and colleagues 
recommended whenever possible a full week of acceler-
ometry data [20]. This was confirmed in a further study 
where they recommended one week or more for IS and 
between three and six days for IV using ICC ≥ 0.7 among 
patients with insomnia or dementia [48]. Considering 
the DFA analysis, the MAPE for self-similarity parameter 
alpha suggests only a 6.5% difference between one and 
seven days of observations. This is in line with other sci-
entific domains, such as genetics [49], respiratory func-
tion [50] and geology [28, 51], where a vector of length of 

one thousand has been reported to be sufficient to pro-
vide robust estimates. To the best of our knowledge, no 
previous study has investigated the impact of non-wear 
for TPs, the closest study was on a sleep fragmentation 
index that suggested three days were required for an ICC 
of 0.7 [25], which is in line with our findings.

There was no large difference in the ICC and MAPE 
whether the non-wear periods were omitted or imputed, 
apart for the self-similarity parameter alpha and IS. For 
alpha, the ICC tend to suggest that four days of data are 
required for reliable measures while the MAPE suggests 
one day to be enough, irrespective of omission or impu-
tation of non-wear period. The main difference relative 
to IS relates to the differences in the treatment of non-
wear periods so that imputation of non-wear periods 
tends to worsen both ICC and MAPE. As illustrated in 
our example, imputation tends to smooth the signal and 
reduce differences between days leading to higher IS 
as compared to the reference signal. This is in line with 
van Somoren and colleagues’ recommendations to omit 
non-wear periods when calculating IS and IV [20]. Some 
researchers might prefer to impute or not non-wear peri-
ods in their sample depending on the considered met-
rics. In this study, we imputed non-wear periods at the 
epoch level using the mean from other available days at 
the same time of the day. This approach is commonly 
used to analyse accelerometer data [23, 35], particularly 
in the context of physical activity. Other methods have 
been used in the accelerometry field [26] but there was 
no evidence of these methods to perform better [26–28]. 
Future studies may evaluate whether other imputation 
methods for non-wear periods might reduce the impact 
of non-wear on fragmentation metrics.

We found only a little impact of the definition of a 
valid day on the minimum number of days required to 
have reliable fragmentation metrics. Keeping a balance 
between wear during the day and night periods has only 
a small added value to the performance indices. Over-
all, the minimum number of days required to reach an 
ICC ≥ 0.75 and a MAPE ≤ 15% was similar in scenarios 
splitting (Scenario 2) or not (Scenario 1) the non-wear 
time between day and night periods. As expected, perfor-
mance indices were better in Scenario 3 defining a valid 
day as a day with no non-wear time although the mini-
mum number of days to have all fragmentation metrics 
with an ICC ≥ 0.75 and a MAPE ≤ 15% remained five. In 
the Whitehall II accelerometer study, using five days as 
the minimum number of valid days resulted in retain-
ing 98.0%, 97.8% and 93.9% of the sample for Scenario 
1, 2, and 3 respectively compared to 69.7% of the sam-
ple who worn the device for the entire seven-day period. 
In a more general context of physical activity and sleep 
research, retaining five days with at least 2/3 of wear 
time during both day and night periods appears to be a 
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reasonable compromise between reliability of the mea-
sures and reduced selection bias [29].

This study has several strengths that include (1) its 
large sample size, (2) the use of MAPE, a reliability per-
formance index robust to outliers, in addition to the 
more commonly used ICC, (3) the simulation plan that 
emulates natural patterns of non-wear blocks, (4) the 
use of tri-axial raw accelerometry devices as commonly 
used nowadays and over the last decade since their 
inception, and (5) to our knowledge, the first evaluation 
of the impact of non-wear for TPs and self-similarity 
alpha metrics using accelerometer data. Findings need 
to be considered in light of some limitations: (1) only 
one imputation method was applied, and future studies 
should investigate whether other methods provide bet-
ter performance, (2) we chose to simulate one block on 
non-wear per day or night periods based on observation 
of non-wear patterns in our study population, but sce-
nario using more blocks of non-wear might be relevant 
to be studied for example for non-waterproof devices as 
they are more likely to be removed several times per day 
unlike the device used in the present study, (3) although 
simulations were based on real life data, findings might 
be specific to the studied population (older adults) and 
accelerometer wear protocol; further studies should rep-
licate this work in different population settings (younger 
adults, clinical population, and other ethnic groups) and 
for several accelerometer placements and brands.

Conclusions
This study shows that the number of valid days needed 
for reliable RAR measures varies as a function of the met-
rics considered. Overall, five days of wear of wrist acceler-
ometer, allowing no more than 1/3 of non-wear for each 
day and night periods, allow for reliable measures of frag-
mentation metrics (IS, IV, four TPs, alpha and ABI) while 
retaining a large proportion of the sample in the analysis. 
The treatment of non-wear periods (omitted or imputed) 
had little impact on the findings. These findings applied 
to both men and women, and to the youngest (60–70 
years) and oldest (70–83 years) age groups. If researchers 
have less than five days of observations, then the analysis 
of RAR fragmentation metrics could be restricted to TPs, 
IV and the self-similarity parameter alpha, as these met-
rics require between two and four days of data to provide 
reliable measures.
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